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Abstract

The Internet of Things (IoT) connects billions of devices and with the devel-
opment of new communication technologies, the number of connected devices
is expected to further grow. It is essential that in these networked environ-
ments, none of the devices introduces severe security issues. The challenge is
that these networks consist of many heterogeneous components, where the in-
sight into these components is limited. Therefore, we require techniques that
allow us to automatically test and analyze black-box components for security
issues. The goal of this thesis is to provide a holistic evaluation of the suit-
ability of automata learning techniques for the automatic testing and analysis
of security-critical aspects in networked environments.

Automata learning proved to be a useful tool to provide insights into the be-
havior of black-box systems. This thesis shows how automata learning can
support the security analysis of networked environments from three perspec-
tives: First, we evaluate the feasibility of automata learning in practice by
learning behavioral models of communication protocol implementations. Sec-
ond, we propose new learning techniques to overcome practical challenges such
as non-deterministic behavior or multi-client communication. Third, we intro-
duce a stateful black-box security testing technique that is based on automata
learning.

Our evaluation considers popular communication protocols in the IoT such
as Bluetooth Low Energy or the publish/subscribe protocol MQTT. Further-
more, we take into account the security-critical key exchange protocol IPsec-
IKEv1 that is used in virtual private networks to establish secure encrypted
communication. We present behavioral models of implementations for each of
these protocols, where the learned behavioral models already show violations
of the corresponding protocol specifications. To overcome the challenges ex-
perienced during learning, we propose new learning techniques. We explore
that recurrent neural networks can be utilized to learn behavioral models on
a given sample. Furthermore, we introduce a novel learning algorithm that
learns an abstracted model of non-deterministic systems.

This thesis also introduces learning-based fuzzing as a new security testing
technique that combines automata learning and fuzz testing. The symbiosis
of these two techniques results in a stateful black-box fuzzing framework. We
researched different strategies on how this technique can be applied in practice.
Our results show that learning-based fuzzing reveals specification violations,
and security and reliability issues in all investigated communication protocols.

Keywords: Automata Learning, Active Automata Learning, Passive Automata Learning, Fuzz
Testing, Model-based Testing, Machine Learning, Recurrent Neural Networks, Bluetooth Low
Energy, MQTT, Virtual Private Network.
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Kurzfassung

Das Internet der Dinge (IdD) verbindet Milliarden an Geräten, und mit der
Entwicklung neuer Kommunikationstechnologien wird die Anzahl an verbun-
denen Geräten voraussichtlich weiter ansteigen. In vernetzten Umgebungen
ist es unerlässlich, dass keine Komponente Sicherheitslücken darstellt. Solche
Netzwerke beinhalten die Herausforderung, dass sie unterschiedlichste Kom-
ponenten vereinen, bei denen der Einblick zu internen Strukturen limitiert ist.
Aus diesem Grund benötigen wir Techniken, die uns eine automatische Ana-
lyse von Black-Box-Komponenten ermöglichen. Das Ziel dieser Arbeit ist eine
ganzheitliche Evaluierung bezüglich der Eignung von Automatenlerntechniken
für das die automatische Testung und Analyse sicherheitskritischer Aspekte
in vernetzten Umgebungen vorzunehmen.

Automatenlernen hat sich als nützliches Werkzeug erwiesen, um Einblicke in
das Verhalten von Black-Box-Systemen zu gewinnen. Diese Arbeit zeigt an-
hand von drei Perspektiven wie Automatenlernen die Sicherheitsanalyse in
vernetzten Umgebungen unterstützen kann: Erstens evaluieren wir die Durch-
führbarkeit von Automatenlernen in der Praxis, indem wir Verhaltensmodel-
le von Implementierungen von Kommunikationsprotokollen lernen. Zweitens
schlagen wir neue Lerntechnologien vor um Herausforderungen aus der Pra-
xis wie nicht-deterministisches Verhalten und Multi-Client-Verbindungen zu
berücksichtigen. Drittens führen wir eine zustandsbasierte Sicherheitstesttech-
nik ein, welche auf Automatenlernen für Black-Box-Systeme basiert.

Unsere Evaluierung betrachtet populäre Kommunikationsprotokolle im IdD
wie Bluetooth Low Energy oder das Publish/Subscribe-Protokoll MQTT. Da-
rüber hinaus berücksichtigen wir das sicherheitskritische Schlüsselaustausch-
protokoll IPsec-IKEv1, das in virtuellen privaten Netzwerken verwendet wird,
um eine sichere verschlüsselte Kommunikation aufzubauen. Wir präsentieren
Verhaltensmodelle für jedes dieser Protokolle, welche bereits auf Verletzun-
gen der entsprechenden Protokollspezifikation hinweisen. Um die Herausfor-
derungen des Lernens zu überwinden, schlagen wir neue Lerntechniken vor.
Wir entdecken, dass rekurrente neuronale Netzwerke dazu verwendet werden
können, Verhaltensmodelle von gegebenen Daten zu lernen. Zusätzlich stel-
len wir einen neuen Lernalgorithmus vor, der ein abstrahiertes Modell von
nicht-deterministischen Systemen lernt.

Diese Arbeit stellt auch lernbasiertes Fuzz-Testen als neue Sicherheitstesttech-
nik vor, die Automatenlernen und Fuzz-Testen kombiniert. Durch die Symbiose
von Automatenlernen und Fuzzing entsteht ein zustandsorientiertes Fuzz-Test-
Framework für Black-Box-Systeme. Wir präsentieren unterschiedliche Strate-
gien, wie diese Technik in der Praxis angewendet werden kann. Unsere Ergeb-
nisse zeigen, dass lernbasiertes Fuzz-Testen Spezifikationsverletzungen sowie
Sicherheits- und Zuverlässigkeitsprobleme in allen untersuchten Kommunika-
tionsprotokollen aufdeckt.

Schlagworte: Automatenlernen, Aktives Automatenlernen, Passives Automatenlernen, Fuzz-
Testen, Modellbasiertes Testen, Maschinelles Lernen, Rekurrentes Neuronales Netz, Bluetooth
Low Energy, MQTT, Virtuelles Privates Netzwerk.
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Graz, Österreich, August 2023

vii



viii



Contents

Abstract i

Acknowledgements v

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Automata Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.3 Fuzz Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.4 Protocol State Fuzzing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.5 Learning-Based Fuzzing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.6 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.7 Research Projects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.7.1 Dependable Internet of Things in Adverse Environments . . . . . . . . . . 5

1.7.2 LearnTwins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.7.3 AIDOaRt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.8 Contributions and Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.8.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.8.2 Main Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.8.3 Supervised Theses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.8.4 Related and Other Publications . . . . . . . . . . . . . . . . . . . . . . . . 10

1.9 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Background 13

2.1 Mealy Machines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Automata learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.1 Passive Automata Learning . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.2 Active Automata Learning . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Communication Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3.1 Message Queuing Telemetry Transport (MQTT) . . . . . . . . . . . . . . 25

2.3.2 Bluetooth Low Energy (BLE) . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3.3 IPsec Internet Key Exchange (IKEv1) . . . . . . . . . . . . . . . . . . . . 28

3 Efficient Automata Learning 31

3.1 Counterexample Postprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2 Caching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3 KV Improvements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3.1 Counterexample Reuse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3.2 Counterexample Postprocessing . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3.3 Caching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

ix



4 Learning of Bluetooth Low Energy Devices 35

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2 Learning Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.2.1 Learning Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2.2 Learning Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.2.3 Mapper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2.4 BLE Central . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.2.5 BLE Peripheral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.3.1 Learning Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.3.2 Bluetooth Low Energy (BLE) devices . . . . . . . . . . . . . . . . . . . . 42

4.3.3 Connection-Procedure Evaluation . . . . . . . . . . . . . . . . . . . . . . . 42

4.3.4 Pairing-Procedure Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.3.5 Fingerprinting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.3.6 Case Study on Tesla Model 3 . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5 Learning of IPsec-IKEv1 VPN Servers 57

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.2 Learning Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.3.1 Case Study Subjects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.3.2 Environmental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.3.3 Learning Results for strongSwan . . . . . . . . . . . . . . . . . . . . . . . 61

5.3.4 Learning Results for libreswan . . . . . . . . . . . . . . . . . . . . . . . . 65

5.3.5 Diffie-Hellman Library Bug . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6 Active vs. Passive Automata Learning 69

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6.2.1 Learning Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6.2.2 Sample Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6.2.3 Result Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6.2.4 Case Study Subjects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.3.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.3.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

x



7 Automata Learning with Recurrent Neural Networks 83

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

7.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

7.2.1 Recurrent Neural Network (RNN) . . . . . . . . . . . . . . . . . . . . . . 84

7.2.2 Addendum to Mealy Machines . . . . . . . . . . . . . . . . . . . . . . . . 84

7.3 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

7.3.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

7.3.2 Training and Automaton Extraction . . . . . . . . . . . . . . . . . . . . . 87

7.3.3 Learning Minimal Automaton . . . . . . . . . . . . . . . . . . . . . . . . . 90

7.4 Case Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

7.4.1 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

7.4.2 Sample Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

7.4.3 Learning with Given States . . . . . . . . . . . . . . . . . . . . . . . . . . 94

7.4.4 Learning Minimal Automata . . . . . . . . . . . . . . . . . . . . . . . . . 95

7.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

8 Learning Abstracted Non-Deterministic Finite State Machines 101

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

8.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

8.2.1 Observable Non-deterministic Finite State Machine (ONFSM) . . . . . . 102

8.2.2 Observation Table for ONFSMs . . . . . . . . . . . . . . . . . . . . . . . . 102

8.3 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

8.4 Learning Framwork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

8.4.1 First-Level Abstraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

8.4.2 Second-Level Abstraction . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

8.4.3 Learning Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

8.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

8.5.1 Practical Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

8.5.2 Case Study Subjects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

8.5.3 Learning Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

8.5.4 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

8.5.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

8.6 AALpy Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

8.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

9 Learning-based Fuzzing 117

9.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

9.1.1 Fuzzing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

9.1.2 Protocol State Fuzzing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

9.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

9.2.1 Grammar-based Fuzzing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

9.2.2 Model-based Fuzzing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

9.2.3 Filter-based Fuzzing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

9.2.4 Search-based Fuzzing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

9.2.5 Genetic-based Fuzzing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

9.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

xi



10 Case Studies on Learning-based Fuzzing 129

10.1 Grammar-based Fuzzing of MQTT . . . . . . . . . . . . . . . . . . . . . . . . . . 129

10.1.1 Learning Setup for Message Queuing Telemetry Transport (MQTT) . . . 130

10.1.2 Fuzzing setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

10.1.3 Case Study Subjects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

10.1.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

10.2 Model-based Fuzzing of BLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

10.2.1 Learning Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

10.2.2 Fuzzing Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

10.2.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

10.2.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

10.3 Fuzzing of Virtual Private Network (VPN) . . . . . . . . . . . . . . . . . . . . . . 142

10.3.1 Learning Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

10.3.2 Fuzzing Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

10.3.3 Environmental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

10.3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

10.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

11 Related Work 149

11.1 Learning Communication Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . 149

11.1.1 Learning-based Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

11.1.2 Protocol State Fuzzing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

11.1.3 Passive Automata Learning . . . . . . . . . . . . . . . . . . . . . . . . . . 151

11.2 Improvements for Automata Learning in Practice . . . . . . . . . . . . . . . . . . 152

11.2.1 Alphabet Abstraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

11.2.2 Algorithmic Improvements . . . . . . . . . . . . . . . . . . . . . . . . . . 152

11.2.3 Choice of Modeling Formalism . . . . . . . . . . . . . . . . . . . . . . . . 153

11.2.4 Alternative Assumptions for Learning . . . . . . . . . . . . . . . . . . . . 154

11.3 RNN-based Learning Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

11.4 Black-box Fuzzing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

11.5 Other Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

12 Conclusion 159

12.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

12.1.1 Learning Communication Protocols . . . . . . . . . . . . . . . . . . . . . . 159

12.1.2 Alternative Techniques for Automata Learning . . . . . . . . . . . . . . . 160

12.1.3 Learning-based Security Testing Techniques . . . . . . . . . . . . . . . . . 160

12.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

12.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

Bibliography 167

xii



List of Figures

1.1 Automata learning framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Learning-based fuzzing concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 Mealy machine modeling a publish/subscribe protocol . . . . . . . . . . . . . . . 14

2.2 Evolution from prefix tree acceptor to minimal automaton . . . . . . . . . . . . . 15

2.3 Minimally adequate teacher framework . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4 Classification tree used for learning a publish/subscribe protocol . . . . . . . . . 21

2.5 Minimally adequate teacher framework with mapper component . . . . . . . . . 24

2.6 Application scenario for the MQTT protocol . . . . . . . . . . . . . . . . . . . . 25

2.7 Layers of the BLE stack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.8 BLE message sequence diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.9 IPsec-IKEv1 message sequence diagram . . . . . . . . . . . . . . . . . . . . . . . 29

4.1 General BLE learning approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.2 BLE learning framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.3 Investigated BLE devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.4 Learned model of the CC2650 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.5 Learned model of the nRF52832 . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.6 Learned model of the CC2652R1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.7 Learned model of the CYW43455 pairing procedure . . . . . . . . . . . . . . . . 49

4.8 Learned model of the CC2640R2 pairing procedure . . . . . . . . . . . . . . . . . 50

4.9 Learning setup for learning Tesla Model 3 key fob . . . . . . . . . . . . . . . . . 52

4.10 Learned BLE model of the Tesla Model 3 . . . . . . . . . . . . . . . . . . . . . . 54

5.1 Automata learning setup for learning IPsec-IKEv1 implementations . . . . . . . 58

5.2 First commonly learned model of strongSwan implementation . . . . . . . . . . . 62

5.3 Second commonly learned model of strongSwan implementation . . . . . . . . . . 63

5.4 Learned base model of the strongSwan implementation . . . . . . . . . . . . . . . 64

5.5 Learned base model of the libreswan implementation . . . . . . . . . . . . . . . . 65

6.1 Heatmaps of conformance percentage . . . . . . . . . . . . . . . . . . . . . . . . . 79

7.1 Adapted RNN cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

8.1 Modified MAT framework for learning abstracted ONFSMs . . . . . . . . . . . . 103

8.2 Abstracted representation of multi-client connection procedure . . . . . . . . . . 104

8.3 ONFSM modeling the multi-client connection protocol . . . . . . . . . . . . . . . 105

xiii



8.4 Learned abstracted ONFSM modeling an MQTT broker with 5 clients . . . . . . 114

9.1 Standard fuzzing framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

9.2 General learning-based fuzzing framework . . . . . . . . . . . . . . . . . . . . . . 120

9.3 Model of a learned BLE device . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

10.1 Learning-based fuzzing setup for fuzzing MQTT brokers . . . . . . . . . . . . . . 130

10.2 Learning framework for learning MQTT brokers . . . . . . . . . . . . . . . . . . 130

10.3 Model of the Eclipse Mosquitto MQTT broker . . . . . . . . . . . . . . . . . . . 132

10.4 A client publishing a malicious message to the MQTT broker . . . . . . . . . . . 132

10.5 Screenshot of an attack on an MQTT broker . . . . . . . . . . . . . . . . . . . . 134

10.6 Behavior of Eclipse Mosquitto MQTT broker on $-topics . . . . . . . . . . . . . . 136

10.7 Partially extended model of the CC2652R1 . . . . . . . . . . . . . . . . . . . . . 141

10.8 Learned model for fuzzing the strongSwan server . . . . . . . . . . . . . . . . . . 143

10.9 Learned model for fuzzing the libreswan implementation . . . . . . . . . . . . . . 143

xiv



List of Tables

2.1 Observation table for learning a publish/subscribe protocol . . . . . . . . . . . . 19

4.1 The investigated BLE devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.2 Learning results for BLE connection procedure implementations . . . . . . . . . . 44

4.3 Learning results for learning the connection procedure of the CC2640R2 . . . . . 46

4.4 Learning results for BLE pairing procedure implementations . . . . . . . . . . . . 47

4.5 Different outputs to generate fingerprinting sequence . . . . . . . . . . . . . . . . 51

4.6 Learning results for Tesla Model 3 and the Tesla Model 3 key fob . . . . . . . . . 53

5.1 Learning results for the strongSwan implementation . . . . . . . . . . . . . . . . 64

5.2 Learning results for the libreswan implementation . . . . . . . . . . . . . . . . . . 65

6.1 Properties of Mealy machines modeling MQTT and BLE implementations . . . . 73

6.2 Active learning results of the BLE case study . . . . . . . . . . . . . . . . . . . . 75

6.3 Passive learning results of the BLE case study . . . . . . . . . . . . . . . . . . . . 76

6.4 Active learning results of the MQTT case study . . . . . . . . . . . . . . . . . . . 77

6.5 Passive learning results of the MQTT case study . . . . . . . . . . . . . . . . . . 78

7.1 Overview on the investigated Tomita grammars . . . . . . . . . . . . . . . . . . . 92

7.2 Learning results on Tomita grammars (number of states given) . . . . . . . . . . 94

7.3 Learning results on BLE experiments (number of states given) . . . . . . . . . . 95

7.4 Learning results on Tomita grammars (number of states not given) . . . . . . . . 97

7.5 Learning results on BLE experiments (number of states not given) . . . . . . . . 97

8.1 Standard observation table of the multi-client connection protocol . . . . . . . . 106

8.2 Abstracted observation table of the multi-client connection protocol . . . . . . . 106

8.3 Initially filled observation table . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

8.4 Initially filled abstracted observation table . . . . . . . . . . . . . . . . . . . . . . 107

8.5 Final observation table of the connection protocol . . . . . . . . . . . . . . . . . . 108

8.6 Final abstracted observation table of the connection protocol . . . . . . . . . . . 108

8.7 Learning setup and results for MQTT brokers . . . . . . . . . . . . . . . . . . . . 114

10.1 Fuzzing results for BLE devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

10.2 Overview on found issues for BLE devices . . . . . . . . . . . . . . . . . . . . . . 140

10.3 Fitness scores for fuzzing the strongSwan implementation . . . . . . . . . . . . . 146

10.4 Runtime overview for different fuzzing techniques . . . . . . . . . . . . . . . . . . 146

xv



xvi



List of Algorithms

1 L∗ algorithm for Mealy machines . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2 KV algorithm for Mealy machines . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3 Generation of a set of random input/output traces. . . . . . . . . . . . . . . . . 72
4 Model forward pass M(i,mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5 RNN training train(M,S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6 Automaton extraction from RNN extract(M,S) . . . . . . . . . . . . . . . . . . . 90
7 Minimal automaton learning fixpoint(S, strategy) . . . . . . . . . . . . . . . . . . 91
8 Learning algorithm using an abstracted observation table . . . . . . . . . . . . . 109
9 ONFSM creation create hypothesis(T , T A′ , IA) . . . . . . . . . . . . . . . . . . . 110
10 Search-based input sequence generation for fuzzing . . . . . . . . . . . . . . . . . 125

xvii



xviii



List of Grammars

9.1 Ruleset for topic filters used in MQTT . . . . . . . . . . . . . . . . . . . . . . . . 122

xix



xx



Abbreviations

BLE Bluetooth Low Energy.

BNF Backus-Naur form.

CPS cyber-physical system.

DFA deterministic finite automaton.

DTLS Datagram Transport Layer Security.

FSM finite state machine.

HTTP Hypertext Transfer Protocol.

IKE Internet Key Exchange.

IoT Internet of Things.

IPsec Internet Protocol Security.

ISAKMP Internet Security Association and Key Management Protocol.

MAT minimally adequate teacher.

MQTT Message Queuing Telemetry Transport.

MTU maximum transmission unit.

ONFSM observable non-deterministic finite state machine.

PAC probably approximately correct.

PSK pre-shared key.

PTA prefix-tree acceptor.

RERS Rigorous Examination of Reactive Systems.

RNN recurrent neural network.

RPC Remote Procedure Call.

RPNI Regular Positive Negative Inference.

xxi



SA Security Association.

SIG Special Interest Group.

SIP Session Initiation Protocol.

SMB Server Message Block.

SMTP Simple Mail Transfer Protocol.

SoC system on the chip.

SSL Secure Sockets Layer.

SUL system under learning.

SUT system under test.

TCP Transmission Control Protocol.

TFTP Trivial File Transfer Protocol.

TLS Transport Layer Security.

VM virtual machine.

VPN Virtual Private Network.

xxii







Chapter 1

Introduction

1.1 Motivation

In 2017, Texas Instruments published an article illustrating different use case scenarios of Blue-
tooth Low Energy (BLE) in an automotive system. The article advertises BLE as a technology
to replace wired communication with wireless communication inside a vehicle. For example,
BLE can be used to collect sensor data such as tire pressure, but also for accessing the car via
a smartphone or key fob. In 2022, the NCC Group published an article [78] demonstrating that
BLE can be exploited for relay attacks. In a relay attack, an attacker simulates trusted devices
by relaying intercepted messages. This leads to security issues, as cars that incorrectly use BLE
features for vehicle access can be opened without proper access. This exploit demonstrates that
such an attack can be successfully executed on the Tesla Model 3 and Model Y. Such examples
show that the misuse of BLE can cause severe security vulnerabilities.

To avoid scenarios such as the unprivileged access of a car, we require technologies that
allow us to detect and mitigate issues in network environments. With the growth of the Internet
of Things (IoT), this becomes a major challenge. The IoT connects billions of heterogeneous
devices and with the development of new communication technologies such as 5G, the number of
connected devices will grow even further [199]. The IoT comprises applications, e.g., for smart
healthcare systems, smart homes, or smart energy grids [205]. In all of these applications, it is
essential that they do not compromise the safety or security of the users.

Market predictions of the Bluetooth Special Interest Group project that especially the num-
ber of peripheral devices will grow [88]. For peripheral devices in particular, we do not have
insights into the internal behavior of the devices. Thus, the devices appear as black boxes, where
we can only execute inputs and observe the corresponding outputs. To ensure the safety and
security of a user, we require techniques that automatically verify and test black-box systems.

This thesis proposes techniques that provide insights into the behavior of black-box compo-
nents in networked environments. Furthermore, we extend these techniques to generate stateful
security-testing techniques for black-box systems.

1.2 Automata Learning

Behavioral models are a useful tool to analyze systems. Models support techniques such as
model-based testing [8, 30] or model-based verification [41]. Furthermore, they help to create
a common understanding of complex systems. In practice, however, models are not always
available. Creating models manually can be a tedious and error-prone process. Our goal is
therefore to generate models automatically.

Automata learning is a technique to automatically generate behavioral models of black-box
systems. The origins of automata learning lie in the work of Gold [73]. His work approaches the
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Figure 1.1: General automata learning framework for learning behavioral models of black-box
systems. The figure is taken from Aichernig et al. [12].

NP-complete problem of identifying a finite state model with at most n states from a given set
of data. Starting from this problem, the whole research area of automata learning has emerged.

Figure 1.1 illustrates the concept of automata learning for learning models of reactive sys-
tems. Automata learning allows us to learn a behavioral model of a black-box system. In this
thesis, we learn behavioral models of communication protocol implementations. Communica-
tion protocols can be modeled as reactive systems, where we can execute inputs and observe
outputs. Thus, we consider our system under learning (SUL) to be a reactive system. Based
on a sample of input/output traces, the automata learning algorithm generates a behavioral
model that represents the SUL. Depending on the origins of the sample, we distinguish between
passive and active techniques. Passive learning creates a behavioral model from a given set of
traces, whereas active learning actively queries the SUL to generate the sample.

This thesis considers both learning paradigms and evaluates their applicability for learning
network protocols. We discuss challenges in learning real-world systems and propose techniques
to overcome them. We present improvements for existing learning approaches but also introduce
new learning techniques. Our proposed techniques also consider behavioral aspects such as non-
deterministic observations. Besides classical learning approaches, we investigate the suitability
of machine learning techniques for automata learning.

1.3 Fuzz Testing

Fuzz testing, frequently abbreviated as fuzzing, is a security testing technique that executes
random inputs on the system under test (SUT). The random inputs include valid inputs as well
as unusual and invalid inputs. The goal of fuzzing is to reveal unexpected behavior, where the
unexpected behavior hints at security issues.

Miller et al. [119] were the first to call their tool for random testing a fuzzer. Their fuzzer
successfully reveals reliability issues such as crash scenarios in UNIX utilities. Nowadays, fuzzing
has proven itself as a popular security testing technique since it achieves a high success rate in
finding vulnerabilities despite its ease of use. Fuzzers like AFL [201] found bugs in operating
system libraries, web browsers, or even media players.

Fuzzing techniques are usually categorized based on the level of access to the SUT. The
literature [71] usually categorizes fuzzing techniques into three categories: white-box, gray-box,
and black-box fuzzing. White-box fuzzers require access to the source code, while black-box
fuzzers can only execute inputs and observe outputs. Everything in between belongs to gray-
box techniques.

This thesis considers black-box fuzzing techniques since components in network systems are
often closed-source. The challenge in black-box fuzzing is to measure coverage and to determine
which parts of the system have been fuzzed. Our proposed techniques overcome this problem,
by considering an underlying behavioral model of the black-box system. This thesis discusses
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Figure 1.2: Two-step procedure of our learning-based fuzzing concept.

different model-based fuzzing techniques for communication protocols.

1.4 Protocol State Fuzzing

Protocol state fuzzing can be seen as a learning-based testing technique [8], where active au-
tomata learning is used to test communication protocol implementations. In contrast to other
learning-based testing techniques for communication protocols such as for Message Queuing
Telemetry Transport (MQTT) [170], protocol state fuzzing focuses more on testing security-
critical aspects of communication protocols.

Protocol state fuzzing has successfully been applied to find issues in different communication
protocols such as Transport Layer Security (TLS) [50], Secure Sockets Layer (SSL)/TLS [163],
Datagram Transport Layer Security (DTLS) [63] and OpenVPN [47]. Protocol state fuzzing is
considered a fuzzing technique since active automata learning executes inputs in states where
the inputs might be unexpected in order to explore the state space. The goal of this technique
is to reveal unexpected state transitions or states.

In this thesis, we will apply protocol state fuzzing techniques to different communication
protocols. Our results show that the learned models demonstrate unexpected behaviors that
violate the corresponding protocol specifications. The drawback of protocol state fuzzing is
that simply executing inputs in an unexpected order may not be enough to detect unexpected
behavior. Thus, we consider advanced fuzzing techniques to test for reliability issues and other
unexpected behaviors that may be difficult to detect during the learning process.

1.5 Learning-Based Fuzzing

In this thesis, we introduce the concept of learning-based fuzzing. Learning-based fuzzing com-
bines automata learning and model-based fuzzing techniques. Figure 1.2 depicts the learning-
based fuzzing approach, which can be described in a two-step procedure. In the first step, we
apply automata learning to learn a behavioral model of a black-box system. In the second step,
we use the learned model as a basis for our model-based fuzzing technique. Our model-based
fuzzing technique tests the conformance between the SUT and the learned model. The test cases

3



are generated using fuzzing techniques. Thus, they include unexpected and invalid inputs. The
goal of our model-based fuzzer is to reveal behavioral differences between the behavioral model
and the SUT.

This thesis introduces different learning-based fuzzing techniques. The proposed techniques
are evaluated on popular communication protocols such as Message Queuing Telemetry Trans-
port (MQTT), Bluetooth Low Energy (BLE), or the IPsec Internet Key Exchange (IPsec-IKEv1)
protocol that is used in VPN servers. We present that our proposed techniques successfully re-
veal security issues in the implementations of all investigated protocols.

1.6 Problem Statement

This thesis provides a holistic evaluation of the suitability of automata learning for analyzing
and testing security-critical aspects of communication protocols. Our evaluation approaches this
problem from three different angles, formulated in three corresponding research questions.

First, we investigate whether active automata learning is suitable to learn behavioral models
of real network components. If automata learning should be considered for real-world security
analysis, it is important that automata learning works not only for simulated network environ-
ments, but also for learning behavioral models of protocol implementations on physical devices.
Additionally, networked environments frequently consist of multiple clients interacting with each
other. We also investigate if automata learning scales for such real-world scenarios. Overall,
we approach the problem of whether automata learning is sufficient to learn expressive models
of security-critical procedures. The challenge in this regard is to find an appropriate level of
abstraction that enables learning but still provides an in-depth exploration of security-relevant
aspects. We summarize these problems in research question RQ 1.

• (RQ 1) What are the challenges of learning behavioral models in networked systems?

– (RQ 1.1) Does active automata learning perform well for learning communication
protocol implementations on physical devices?

– (RQ 1.2) Is automata learning useful to learn security-critical behavior?

Second, we evaluate alternatives for common learning techniques in order to improve the
practical feasibility of automata learning. This problem can be considered as a follow-up question
that addresses the findings obtained for RQ 1. For this purpose, we compare the two learning
paradigms, active and passive learning, in terms of the effort required to learn adequate models
of network protocols. Our evaluation not only considers passive learning algorithms from the
literature. We also approach the question of whether machine-learning-based learning techniques
represent an alternative to standard automata learning algorithms. Furthermore, we discuss if
additional abstraction techniques enable the learning of large network systems, where we suspect
that these systems do not always behave deterministically. All these techniques and challenges
are discussed in RQ 2.

• (RQ 2) How can automata learning be improved for practical applications?

– (RQ 2.1) Does passive learning represent an alternative to active learning?

– (RQ 2.2) How to improve automata learning to make it feasible for different chal-
lenges in networked environments?

Third, we evaluate the feasibility of automata learning to support popular security testing
techniques. To answer this question, we mainly focus on fuzz testing as a security testing
technique. We investigate how automata learning can support fuzz testing, especially for black-
box systems often found in networked environments. Furthermore, we evaluate if the presented
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techniques are actually effective to uncover security vulnerabilities. In addition to fuzzing, we
also approach the question if automata learning can be used to fingerprint black-box systems,
which creates the risks to exploit system-specific vulnerabilities. RQ 3 summarizes the aspects
of this part of our evaluation.

• (RQ 3) Can automata learning support security testing techniques?

– (RQ 3.1) How can black-box fuzzing techniques be extended with automata learning?

– (RQ 3.2) Is learning-based fuzzing effective at revealing security issues?

– (RQ 3.3) Can automata learning be used to fingerprint black-box devices?

1.7 Research Projects

The work performed toward this thesis is part of three different research projects: (1) Dependable
Internet of Things in Adverse Environment, (2) LearnTwins, and (3) AIDOaRt. In the following,
we describe the scope of the research projects and outline how the methods presented in this
thesis contribute to the individual projects.

1.7.1 Dependable Internet of Things in Adverse Environments

The Dependable Internet of Things in Adverse Environments project was a university internal
research project that unites researchers from the faculties of Computer Science and Biomedical
Engineering, and Electrical and Information Engineering of Graz University of Technology. The
project lasted from 2016 to 2022 and was divided into two main project phases. This thesis
belongs to the second phase of the project, which lasted from 2019 to 2022. The goal of the
project was to improve the level of dependability in the IoT in adverse environments. The
project focused on foundational research in order to develop methods to make the IoT more
reliable, secure and safe.

In the first phase of the project, my predecessor Martin Tappler applied automata learning for
testing purposes in networked environments. To cope with environmental conditions in the IoT,
his PhD thesis [169] proposes learning techniques for timed and stochastic behavior. I performed
my Master’s thesis [143] within the first phase of the project, proposing a metaheuristic-search-
based learning algorithm for timed systems.

In the second phase of the project, the goal of the subproject to which this thesis belongs was
to apply and improve the techniques of the first phase for security-critical environments. Thus,
the goal of this thesis was to apply automata learning techniques to investigate security-critical
aspects in the IoT. For this purpose, the thesis proposes learning techniques for communication
protocols that are frequently used in the IoT such as MQTT and BLE. The thesis shows not
only that automata learning can be used to learn behavioral models of physical devices, but
also that automata learning can be extended to test the security-critical behavior of black-box
systems.

1.7.2 LearnTwins

The LearnTwins project is a nationally-funded project between two academic partners, the
Austrian Institute of Technology and the Graz University of Technology, and one industrial
partner, the AVL List GmbH. The goal of the project is to develop methods to automatically
generate digital twins of cyber-physical systems (CPSs). A digital twin is a virtual representation
of a real-world system that simulates the behavior of the twinned system. Digital twins are useful
since they provide insights into twinned systems, without requiring access to the real system.

Within this thesis, we investigated techniques to learn digital twins. A behavioral model of a
system can be seen as a digital twin. Thus, automata learning represents a tool to automatically
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learn digital twins. The project aims to compare and develop automata learning techniques for
learning digital twins. This thesis presents machine-learning-based techniques to infer behavioral
models that were developed together with our academic partner. Furthermore, based on case
studies provided by our industrial partner, this thesis provides methods to learn security-critical
components in automotive systems.

1.7.3 AIDOaRt

The AIDOaRt project is a European project including 31 partners from academia and industry
of seven different countries. The goal of the project is to employ techniques based on artificial
intelligence to test, model, monitor and develop CPSs.

Within this project, we collaborate closely with our national industrial partner AVL List
GmbH. The goal of the collaboration is to develop security testing techniques for automotive
components. This thesis contributes to this project goal by proposing learning-based fuzzing
techniques. This research effort has been rewarded within the project. Our learning-based
fuzzing technique won the third edition of the project-internal hackathon. Our
presented hackathon challenges demonstrate how learning-based fuzzing can be used to learn
and test the BLE interface of Automotive Grade Linux (AGL), where AGL is an open-source
operating system for automotive software components.

1.8 Contributions and Publications

In the following, we summarize the contributions of this work. The list of contributions is sup-
plemented by a list of main publications that form the basis for the content presented in this
work. For all these main publications, I am considered a main author. For each of these publi-
cations, a statement of my actual contributions is included. In addition, this section enumerates
the co-supervised Bachelor’s and Master’s theses and declares if they are part of this thesis. As
a final part, this section provides a list of related publications for which either I was not the
main author or the topic covered is out-of-scope for this thesis.

1.8.1 Contributions

• We demonstrate the practical applicability of automata learning by presenting a learning
framework that learns behavioral models of physical black-box systems. The case studies
also include the learning of components that are installed in a real car.

• We present that automata learning can be used to learn security-critical protocols such as
the exchange of an encryption key.

• We report that exhaustive querying in active automata learning reveals security vulnera-
bilities and reliability issues in security-critical protocols.

• Our presented learned models of the considered communication protocols demonstrate
violations of the corresponding protocol specification.

• Our learned models present differences in the communication protocol implementations.
We show how these behavioral differences can be exploited to fingerprint the implementa-
tions.

• We compare the two main learning paradigms, active and passive learning, for their effec-
tiveness in learning communication protocols.

• We extend state-of-the-art learning libraries by active automata learning algorithms that
are more efficient in the number of performed queries.
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• We introduce an abstraction technique that enables the efficient learning of non-deterministic
systems.

• We present a passive learning technique that uses a constrained training technique for a
recurrent neural network (RNN) model in order to learn a minimal finite state machine.

• We introduce a stateful black-box fuzzing concept based on automata learning and model-
based fuzzing.

• We present different learning-based fuzzing techniques and evaluated their effectiveness in
testing popular communication protocols. Our technique reveals several reliability issues
and specification violations.

• We are committed to making our research and tools available to the public. The following
frameworks are available online.

– Active automata learning framework for Bluetooth Low Energy (BLE): [144]

– Evaluation framework for the comparison of active and passive automata learning
algorithms: [127]

– Learning-based fuzzing framework for MQTT: [126]

– Learning-based fuzzing framework for BLE: [145]

– The improved version of the learning algorithm of Kearns and Vazirani (KV ) and the
improved version of the learning algorithm for abstracted non-deterministic systems
are integrated into the public learning library AALpy [129]

1.8.2 Main Publications

1. ICTSS 2020: “Learning Abstracted Non-deterministic Finite State Machines” [146]. This
paper presents an active learning algorithm for learning abstracted observable non-deter-
ministic finite state machines (ONFSMs). The presented algorithm is evaluated on a case
study on learning MQTT brokers interacting with multiple clients. The algorithm and the
case study are presented in Chapter 8.

I presented the paper at the virtual event of the ICTSS 2020 and the paper is published
in the corresponding conference proceedings. I designed the algorithm, implemented the
algorithm in Scala, set up the case study environment including all MQTT brokers and
executed all reported experiments. I wrote all parts of the paper under the supervision of
Bernhard Aichernig.

2. ICST 2021: “Learning-Based Fuzzing of IoT Message Brokers” [11]. The paper presents
the learning-based fuzzing framework for fuzzing MQTT brokers. Chapter 9 discusses the
grammar-based fuzzing technique and Chapter 10 provides the results of applying this
technique on MQTT brokers.

I presented the paper at the virtual event of ICST 2021. The paper was published in
the corresponding proceedings. I implemented the learning interface. Edi Muškardin
implemented the fuzzing component during his Master’s project which I co-supervised.
The idea to use grammar-based fuzzing came from my side. The paper was written in
collaboration with Edi Muškardin and Bernhard Aichernig. The initial version was mostly
written by myself except for some paragraphs in the experimental setup sections.

3. FM 2021: “Fingerprinting Bluetooth Low Energy Devices via Active Automata Learn-
ing” [147]. The paper presents the active automata learning case study on learning BLE
devices. In addition, the paper discusses that active automata can be used to fingerprint
black-box systems. Chapter 4 discusses the paper in detail.
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I presented the paper at the virtual event of FM 2021. The paper was part of the corre-
sponding proceedings. The setup of the learning interface and the Bluetooth Low Energy
(BLE) devices, the conduction of the case study, and the writing of the initial version of
the paper were done by myself. Under the supervision of Bernhard Aichernig, I revised
the initial paper draft.

4. NFM 2022: “Stateful Black-Box Fuzzing of Bluetooth Devices Using Automata Learn-
ing” [148]. The paper introduces a learning-based fuzzing framework for BLE devices.
The conducted case study revealed several issues in the investigated BLE devices. The
fuzzing technique is presented in Chapter 9 and the corresponding case study in Chap-
ter 10.

I presented the paper at NFM 2022 in Pasadena, California. The paper was part of
the corresponding conference proceedings. I designed the stateful fuzzing approach and
implemented it. I conducted the case study and wrote the paper. I revised the paper
according to the comments of Bernhard Aichernig.

5. FMAS 2022: “Active vs. Passive: A Comparison of Automata Learning Paradigms for
Network Protocols” [13]. The paper compares active and passive automata learning tech-
niques on their effectiveness to learn communication protocols. Chapter 6 presents the
performed evaluation.

I presented the paper at the workshop FMAS 2022 in Berlin, Germany. The paper is part
of the workshop proceedings. The paper was written in collaboration with Edi Muškardin
and Bernhard Aichernig. Edi Muškardin and I collaborated to set up the evaluation
framework. I conducted the experiments except for the heatmap experiments. I wrote the
majority of the paper, except for some paragraphs for the experimental setup.

6. SEFM 2022: “Constrained Training of Recurrent Neural Networks for Automata Learn-
ing” [12]. The paper introduces a passive automata learning approach that is based on
training an RNN. Chapter 7 introduces the learning approach and presents the performed
evaluation.

I presented the paper at SEFM 2022 in Berlin, Germany. The paper is part of the re-
spective conference proceedings. The work was done in close collaboration with Bernhard
Aichernig, Sandra König, Cristinel Mateis, Dominik Schmidt, and Martin Tappler. I an-
alyzed the early results of the developed approach and presented ideas on how to adapt
the constrained training. For the evaluation, I generated the BLE data and all the active
automata learning data for the case study. I wrote parts of the paper that affect my
previous contributions and revised it according to the reviewer’s comments.

7. FMDT 2023: “Mining Digital Twins of a VPN Server” [150]. The paper describes the
active learning setup for learning behavioral models of IPsec IKEv1 protocol implementa-
tions. The learning setup and the learned models are presented in Chapter 5.

I presented the paper at the workshop FMDT 2023 in Lübeck, Germany. The paper was
published in the pre-proceedings of the workshop. A version for the post-proceedings has
been submitted. The learning setup and experimental evaluation were performed within
the Master’s project of Benjamin Wunderling which I co-supervised. I advised on the active
learning setup. I also extended the learning library AALpy by a version of the learning
algorithm proposed by Kearns and Vazirani [96], which was applied in the learning setup.
The paper was written in collaboration with Benjamin Wunderling. I wrote the version
for the post-proceedings, taking into account the discussion at the workshop.

8. FMSD 2023: “Fingerprinting and Analysis of Bluetooth Devices with Automata Learn-
ing” [149]. This article presents an extended version of the FM 2021 paper [147]. The
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article extends the paper by evaluating additional BLE devices and by a learning inter-
face that enables the learning of the BLE pairing procedure. The extension is included in
Chapter 4.

I set up the learning interface and conducted all experiments. The article was written by
myself under the supervision of Bernhard Aichernig. I included the initial comments from
the reviewers in a major revision of this article.

9. SoSyM: “Learning Minimal Automata with Recurrent Neural Network” [14] (under review,
submitted February 2023). This article presents an extended version of the SEFM 2022
paper [12]. The extension includes an iterative approach that enables the learning of
minimal automata with our RNN-based learning technique, even if the minimal number
of states is unknown. Chapter 7 describes the performed extensions.

The article was written in collaboration with Bernhard Aichernig, Sandra König, Cristinel
Mateis, and Martin Tappler. I contributed to this article by proposing the idea of an
iterative learning technique that incrementally decreases the maximum number of states,
with the addition that minimization algorithms are used to further decrease the number
of states. I described the initial version of the algorithm in the article. I submitted the
article in February 2023.

1.8.3 Supervised Theses

1. Bachelor’s thesis of Konstantin Windisch: “Optimizations on Active Automata Learning
for Observable Non-deterministic Finite State Machines” [193]. The thesis discusses op-
timizations for the learning algorithms on ONFSMs implemented in the learning library
AALpy [129]. The optimizations are presented in Chapter 8.

The integration in the learning library AALpy of the learning algorithm that is presented
in Chapter 8 was done by myself. I co-supervised the Bachelor’s thesis of Konstantin
Windisch in which the optimizations for the implementation in AALpy have been imple-
mented. I advised the student on the learning algorithm, the implementation in AALpy,
and the conducted evaluation. I reviewed the thesis and made suggestions for revision.

2. Bachelor’s thesis of Maximilian Rindler: “Implementing the Kearns-Vazirani Algorithm for
Learning Deterministic Finite Automata in AALpy” [155]. The Bachelor’s thesis presents
the implementation of the active automata learning algorithm proposed by Kearns and
Vazirani [96] in the learning library AALpy. The thesis also proposes additional improve-
ments for the learning algorithm. Chapter 3 discusses the implemented improvements.

I co-supervised the Bachelor’s thesis. I explained automata learning and the active learning
algorithm. Furthermore, I suggested optimizations for the learning algorithm and proposed
a setup for the evaluation. The implementation of the learning algorithm for deterministic
finite automata (DFAs) built the basis for the extension to Mealy machines which was
performed by myself. I reviewed the Bachelor’s thesis and provided comments for the
revision of the thesis.

3. Master’s thesis of Benjamin Wunderling: “Model Learning and Fuzzing of the IPsec-IKEv1
VPN Protocol” [196] (not yet submitted). The Master’s thesis presents that active au-
tomata learning can be used to learn protocols of VPN servers. Furthermore, the thesis
discusses and applies learning-based fuzzing techniques. Chapter 5 presents the learning
part, whereby the fuzzing approach is part of Chapter 9 and the corresponding case study
is presented in Chapter 10.

I co-supervised the Master’s thesis. I advised on how active automata learning can be used
to learn communication protocols and showed how to implement a mapper that can be
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reused for fuzzing purposes. I recommended using a different learning algorithm in order
to improve the performance. Furthermore, I extended the ideas for the applied fuzzing
techniques. I reviewed the thesis and suggested revisions. The thesis is now submitted for
review to Benjamin Wunderling’s supervisor Bernhard Aichernig.

4. Bachelor’s thesis of Valentina Wieser: “Property-Based Testing of a Web Application using
JavaScript” [192]. The Bachelor’s thesis describes the testing of REST APIs with the
property-based testing framework fast-check1.

I co-supervised the Bachelor’s thesis. I advised on the applied testing technique and on the
properties that should be used. I reviewed the Bachelor’s thesis and provided comments
for the revision. The content of the Bachelor’s thesis was not included in this thesis, since
the topic of the Bachelor’s thesis is out of scope.

1.8.4 Related and Other Publications

1. NFM 2020: “From Passive to Active: Learning Timed Automata Efficiently” [10]. The
paper presents an active automata learning algorithm for learning timed automata. To
overcome the large state space of timed systems, the algorithm applies a metaheuristic
search. This paper presents an active version that implements a conformance testing
technique for timed systems.

I presented the paper at the virtual event of the NFM 2020. The main work was done as
part of my Master’s thesis [143], which was co-supervised by Martin Tappler. The content
of my Master’s thesis was part of the PhD thesis of Martin Tappler [169].

2. ATVA 2021: “AALpy: An Active Automata Learning Library” [128]. The tool paper
presents the active automata learning library AALpy that is implemented in Python.

The main contributor to this tool and paper was Edi Muškardin. I developed the active
non-deterministic learning algorithms in the learning library and described the technique
in the tool paper.

3. ISSE 2022: “AALpy: an active automata learning library” [129]. The article represents
an extended version of the tool paper presenting AALpy [128].

The main contributor to this article is Edi Muškardin. Similar, to the tool paper I con-
tributed by writing the sections about learning of non-deterministic systems. Furthermore,
I wrote the section on the BLE case study as an example of how AALpy can be used in
practice.

4. FM 2023: “A Systematic Approach to Automotive Security” [55]. The paper proposes a
methodology framework for the verification and validation of security risks in automotive
systems.

I contributed to this paper by advising on the usage of AALpy. Together with a subset
of the authors of this paper, I set up a learning interface for an Electronic Control Unit
(ECU) that uses the Unified Diagnostic Services (UDS) protocol. We learned a model that
revealed a security vulnerability that is reported in the paper.

1https://github.com/dubzzz/fast-check
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5. ICSE 2024: “Learning and Repair of Deep Reinforcement Learning Policies from Fuzz-
Testing Data” [176] This paper introduces a reinforcement learning technique that benefits
from demonstrations automatically generated using search-based fuzzing techniques. The
paper also discusses that the presented technique can be used to repair existing reinforce-
ment learning policies.

This paper has just been accepted for ICSE 2024. I implemented the reinforcement learning
technique and search-based fuzzing technique for the Minigrid experiments. I wrote parts
of the paper describing the implemented fuzz testing technique and the corresponding
sections on the Minigrid experiments.

1.9 Structure

The structure of the thesis is as follows. First, Chapter 2 provides background information
that is required for the entire thesis. The background includes the formal definition of Mealy
machines, which is the modeling formalism used in most of the case studies presented to describe
the behavior of networked systems. We then provide background information on automata
learning, including a discussion on active and passive automata learning algorithms from the
literature that are applied in this thesis. As a last part, the background chapter introduces the
three communication protocols that serve as case study subjects throughout the entire thesis:
Message Queuing Telemetry Transport (MQTT), Bluetooth Low Energy (BLE), IPsec Internet
Key Exchange (IPsec-IKEv1).

Chapter 3 discusses improvements for automata learning algorithms. This chapter provides
an overview of algorithmic improvements such as counterexample processing and practical im-
provements such as caching data structures. We also present our improved version of the learning
algorithm proposed by Kearns and Vazirani [96].

In Chapter 4, we present our case study on learning BLE devices. The chapter introduces
the learning framework and discusses technical challenges and the achieved results on learning
six different BLE devices. We also show how active automata learning can be used to fingerprint
BLE devices. Furthermore, it provides an additional case study for learning the BLE devices
used in a Tesla Model 3 and in the corresponding key fob to access the car.

Next, we present a case study on learning VPN servers in Chapter 5. More specifically, we
learn the IPsec Internet Key Exchange (IPsec-IKEv1) protocol. Within the case study, we also
compare two different learning algorithms: an improved L∗ version vs. an improved version of
the learning algorithm proposed by Kearns and Vazirani.

In Chapter 6, we approach the question of how well classic state-merging-based passive
learning performs on learning communication protocols. This chapter also discusses the potential
for improving the L∗-variant, which was used in most of the case studies in this thesis.

Next, we introduce a novel passive learning algorithm in Chapter 7. We train an RNN model
to predict the behavior and the structure of a Mealy machine. For this purpose, we propose
an RNN architecture which we trained using a specific constrained loss function. The chapter
evaluates the proposed learning technique on a typical benchmark set for RNN-based automata
learning approaches and on BLE device data.

Chapter 8 introduces a learning algorithm for learning abstractions of non-deterministic
systems. First, the chapter provides some background on the considered modeling formalism
for non-deterministic systems. Afterwards, we introduce our proposed learning framework and
algorithm. We evaluated the presented algorithm in a case study learning a communication
protocol in a multi-client setup.

In Chapter 9, we propose the concept of learning-based fuzzing and introduce several methods
that apply this concept. First, we provide some background on fuzz testing. Next, we present
the learning-based fuzzing framework. We show that learning-based fuzzing can be combined
with different techniques such as grammar-based fuzzing or search-based testing techniques.
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We evaluate all our presented learning-based fuzzing methods in Chapter 10. The chapter
includes case studies on the MQTT, BLE, and IPsec-IKEv1 protocol. Our presented results
show that our techniques are effective in finding issues in the protocol implementations.

Chapter 11 discusses related work on learning communication protocols, enhancements for
automata learning algorithms, RNN-based learning techniques and learning-based fuzzing tech-
niques as well as other fuzzing techniques for the investigated communication protocols. We
conclude the thesis in Chapter 12 with a summary, a final discussion based on the proposed
research questions, and an outlook on future work.
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Chapter 2

Background

2.1 Mealy Machines

Mealy machines are a commonly used modeling formalism for reactive systems. Moreover, many
automata learning algorithms [89, 113, 162] have been extended for learning Mealy machines.
Georg H. Mealy [117] introduces Mealy machines as finite state machines whose transitions are
labeled with inputs and outputs. Formally, we define Mealy machines as follows.

Definition 1 (Mealy machine) A Mealy machine M is a 6-tuple
〈Q, q0, I, O, δ, λ〉, where

• Q is the finite set of states,

• q0 ∈ Q is the initial state,

• I is the finite set of inputs,

• O is the finite set of outputs,

• δ : Q× I → Q is the state transition function, and

• λ : Q× I → O is the output function.

We define δ and λ as total functions. Consequently, M formalizes deterministic behavior,
and δ and λ are defined for any input in any state q ∈ Q. In this way, we ensure testability for
the model-based testing techniques applied later.

Let s ∈ (I ×O)∗ be a sequence of alternating inputs and outputs, which we call a trace. Let
sI ∈ I∗ and sO ∈ O∗ be the corresponding input and output sequences. We denote the non-
empty trace as s+ ∈ (I×O)+, with the non-empty input sequence sI

+ ∈ I+ and output sequence
sO

+ ∈ O+. We write s = (i0, o0) · . . . · (ij , oj) · . . . · (in−1, on−1), where j, n ∈ N and 0 ≤ j < n.
Let ε denote an empty sequence. The concatenation of two sequences s, s′ ∈ (I×O)∗ is denoted
by ·, i.e., s · s′. We write | s | for the length of a sequence s, which is equal to the number of
input/output pairs n in a sequence. We extend δ and λ for sequences. Let δ∗ : Q× I∗ → Q be
the corresponding state transition function that takes an input sequence instead of a single input
and λ∗ : Q × I∗ → O∗ be the output function returning the output sequence. Let λ∗(q, ε) = ε
and δ∗(q, ε) = q hold. We recursively define that δ∗(q, i0 · . . . · in) = δ∗(δ(q, i0), i1 · . . . · in) and
λ∗(q, i0 · . . . · in) = λ(q, i0) ·λ∗(δ(q, i0), i1 · . . . · in). For the sake of simplicity, we abbreviate δ∗ and
λ∗ for the initial state q0 by δ∗(q0, i0 · . . . ·in) = δ∗(i0 · . . . ·in) and λ∗(q0, i0 · . . . ·in) = λ∗(i0 · . . . ·in).
A sequence sI ∈ I∗ is called access sequence of a state q, if the state transition performed from
the initial state q0 yields state q, i.e., δ∗(sI) = q holds.

A Mealy machine M defines a language L(M), where L(M) includes all traces that are
observable in M. We define two Mealy machines to be observable equivalent if they implement
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Figure 2.1: A Mealy machine representing a simple publish-subscribe protocol implementation.

the same language. In other words, two Mealy machines M = 〈Q, q0, I, O, δ, λ〉 and M′ =
〈Q′, q′0, I, O, δ′, λ′〉 are equivalent iff no input sequence exists that produces a different output
sequence. Thus, a counterexample to the equivalence between M and M′ would be an input
sequence sI , where λ∗(sI) 6= λ′∗(sI).

Example 1 (Mealy machine) Figure 2.1 illustrates a Mealy machine that formalizes a simple
implementation of a publish/subscribe protocol. In practice, an example of a publish/subscribe
protocol in the IoT would be the MQTT protocol [22]. In this protocol, clients can connect to a
central server. Clients can thereafter subscribe to receive published messages or publish messages
themselves. An established connection can be terminated by another connection request.

The Mealy machine depicted in Figure 2.1 has three states, via circles labeled with the unique
state identifiers q0, q1, and q2. The initial state q0 is indicated by an arrow with an empty
source. The Mealy machine includes the inputs I = {connect, publish, subscribe, unsubscribe} and
the outputs O = {ack, closed,message, none}. A transition between two states is labeled with an
input followed by a slash character (‘/’) and the corresponding observable output. For example,
the input connect executed in state q0 results in the output ack and the transition to state q1,
which corresponds to the output function λ(q0, connect) = ack and the state transitions function
δ(q0, connect) = q1 respectively. A trace of this Mealy machine would be

(connect, ack) · (subscribe, ack) · (publish,message) · (connect, closed).

Mealy machines are a popular modeling formalism for communication protocols [50, 61, 62,
63, 168, 170]. Since many case studies in this thesis are based on communication protocols, we use
Mealy machines as a preferred modeling formalism. However, the assumption of deterministic
behavior may be too restrictive. Chapter 8 will introduce another modeling formalism that
relaxes the assumption of deterministic behavior.

2.2 Automata learning

Automata learning is a technique for automatically generating a behavioral model that ade-
quately formalizes a black-box system using a set of system observations. Formally, letMSUL be
an unknown Mealy machine representing a black-box system. The goal of automata learning is to
identify a Mealy machineM that defines the same language as the SUL, i.e., L(M) = L(MSUL).
Gold [73] presents the first approaches to this problem in 1972.

In automata learning, two approaches are distinguished: Passive and active automata learn-
ing. Passive learning techniques identify a model from a given set of system data, whereas
active techniques interact with the SUL to generate the data set for learning. The problem of
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given traces in Example 2. Blue nodes
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Figure 2.2: Steps of the RPNI algorithm starting from the initial PTA to the final merged
automaton. The example is modified from the example given by Aichernig et al. [13].

identifying a behavioral model with at most n states from a given data set is NP -complete [74].
Moreover, Angluin [16] shows that the number of required interactions in active learning is also
exponential when only n is known.

Considering the hardness of automata learning, it can nevertheless be successfully applied in
practice as it is shown in this thesis. Moreover, automata learning techniques have been extended
to different types of modeling formalisms, so that this technique can be applied for application to
various types of systems, e.g., timed systems [10, 75, 77, 171] or stochastic systems [32, 172, 173].

2.2.1 Passive Automata Learning

Passive automata learning algorithms learn a behavioral model given a sample. Commonly,
passive learning techniques are based on state merging [32, 49, 138, 187] or are search-based [93,
102, 105, 171]. Other passive learning techniques utilize different methods such as the training
of a recurrent neural network (RNN) [136, 137]. In this thesis, we will evaluate a state-merging
based technique and introduce a new RNN-based approach in Chapter 7.

State-merging algorithms create a prefix-tree acceptor (PTA) from a given sample and then
merge states so that the automaton still conforms to the sample. The learning algorithm termi-
nates when no further states could be merged. The Regular Positive Negative Inference (RPNI)
algorithm [49, 139] is an example of an algorithm that follows such a state-merging approach.
RPNI requires a set of positive and negative traces. Positive traces contain behavior that shall
be described by the learned automaton, while the behavior shown in negative traces must not be
included. Let L(MSUL) be the language that is defined by an unknown Mealy machine MSUL.
Positive traces are part of L(MSUL), while negative traces are not included.

Based on the positive traces, RPNI builds a PTA. The states of the PTA are then merged
to create a finite automaton. A merge is valid if no negative trace can be generated by the
merged automaton. Otherwise, if the merged automaton now includes negative examples, the
merge is discarded and another merge is attempted. In this technique, additional labels are
assigned to nodes to indicate which states are currently eligible for merging. These types of
nodes are commonly assigned to a specific color, which can be seen as a classification of states.
The classes distinguish between states that cannot be merged, states that are currently being
considered for merging, and states that have not yet been considered. Variants of the RPNI
algorithm can learn Mealy machines from input/output traces. In Mealy machine learning, states
are merged when outputs for an input are the same. Tappler et al. [15] explain that learning
Mealy machines from positive traces only is feasible, since other traces provide counterexamples
showing different outputs for the same input. Incorrect merging would therefore violate the
assumption that output behavior is deterministic.
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Figure 2.3: Angluin’s [17] MAT framework with adaptions for learning reactive systems. The
figure is based on the figures proposed by Smeenk et al. [164] and Tappler et al. [11].

Example 2 (RPNI) Our goal is to learn a minimal Mealy machine that represents the follow-
ing two traces.

(1) (connect, ack) · (connect, closed) · (connect, ack)
(2) (subscribe, none) · (connect, ack)

These two traces are part of the language defined by the Mealy machine depicted in Figure 2.1.
Therefore, connect and subscribe are input actions, and ack, closed and none are output actions.
The PTA of these two traces is shown in Figure 2.2. The red states indicate the states that will
be included in the final automaton, and the blue states are currently candidates for merging with
the red states. For example, in the PTA shown in Figure 2.2a, the first step is to check if the
blue state q1 can be merged with the red state q0. Merging is not possible since the input connect
generates two different outputs: ack and closed. However, q2 can be merged with q0. Figure 2.2b
shows the automaton after the merge. In the next step, q3 can be merged into q0, resulting in the
final automaton presented in Figure 2.2c. Note that passive learning algorithms can only model
behavior that is contained in the given data set. For example, the learned automaton presented
in Figure 2.2c is not input enabled, since no trace was given that describes the behavior of input
subscribe in state q1.

In addition to state-merging techniques, there are also search-based learning techniques [102,
108, 171]. Many of these approaches are based on evolutionary algorithms that optimize the
solution using a fitness function. A third category of passive learning techniques based on the
training of RNNs will be discussed in detail in Chapter 7.

2.2.2 Active Automata Learning

In active automata learning, we actively interact with the SUL to create the data set for learning.
Angluin [17] proposed the L∗ algorithm. The L∗ algorithm was originally designed to generate
a minimal deterministic finite automaton (DFA) that represents an unknown regular language.
In her seminal work, Angluin introduced the minimally adequate teacher (MAT) framework,
which is still the base for many active automata learning algorithms.

Minimally Adequate Teacher Framework

Figure 2.3 depicts an adapted MAT framework that distinguishes two members: the learner
and the teacher. The learner wants to learn a behavioral model of a black-box SUL about
which the teacher has knowledge. To learn the behavioral model, the learner asks the teacher
questions. Note that the MAT framework requires that the SUL can be reset to the same initial
state before each query. Thus, we assume that each query is executed from the initial state. In
the MAT framework, we distinguish two types of queries: membership queries and equivalence
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queries. Membership queries are asked to determine whether a given input sequence is part
of the language. The learner stores the received answer in an internal database with a certain
structure. In the original L∗, a table-based structure called observation table was used to store
the queried data. Based on the queried data set, the learner then creates a hypothesis model.
This hypothesis is a conjecture about the behavioral model that represents the unknown SUL.

In an equivalence query, the learner proposes the generated hypothesis to the teacher and
asks if the hypothesis defines the equivalent behavior. The teacher then either responds that this
conjecture is correct or returns a counterexample showing the behavioral differences between the
provided hypothesis and the SUL. In the case of learning a DFA, a counterexample would be
an input sequence that is accepted by the provided DFA but rejected by the SUL, or vice versa.

If the teacher provides a counterexample, the learner improves the hypothesis according
to the provided counterexample. This may require asking further membership queries. The
improved hypothesis is then proposed again to the teacher. This iterative procedure is repeated
until the teacher no longer provides a counterexample and accepts the hypothesis as equivalent
to the SUL. The last proposed hypothesis is then returned by the learner. Angluin [17] shows
that under the assumption of a perfect teacher, the model can be learned by asking a polynomial
number of queries.

Conformance Testing

In conformance testing, the goal is to test whether an implementation conforms to a given speci-
fication defined by a model. The literature [8, 27] discusses the similarities between conformance
testing and automata learning. Both techniques aim to show the equivalence between a model
and a black-box system. However, the problem in automata learning is inherently more difficult
since the model is unknown. Under the assumption of a perfect teacher, who can tell the differ-
ence between the hypothesis and the SUL, the collection of performed queries would present a
test suite for conformance testing. However, the assumption of a perfect teacher is not feasible
in practice.

Considering the similarities between conformance testing and automata learning, we can
formulate the equivalence oracle as a conformance testing problem. Hence, we want to find a
test suite that can determine whether the SUL and the hypothesis are behavioral equivalent.
In automata learning, we use model-based testing techniques to approximate whether the SUL
conforms to the learned hypothesis. The test suite consists of a finite number of test cases. A test
case passes if the behavior implemented by the SUL conforms to the learned model, otherwise,
the test case fails. Formally, we write I passes tc and I fails tc if the implementation I passes
and fails a test case tc, respectively. For conformance testing, we create a finite test suite. If
all test cases in the test suite pass, it denotes that the learned hypothesis conforms to the SUL.
Otherwise, a failed test case represents a counterexample to the equivalence between SUL and
hypothesis. Utilizing Tretmans’ implementation relation [180], as shown by Tappler [169], we
define a conformance relation I imp H that is satisfied if an implementation I implements a
specification H. The implementation relation is satisfied if all test cases pass. Let TC be a finite
test suite, we define the following conformance relation

I imp H ⇔ ∀ tc ∈ TC : I passes tc. (2.1)

Note that this conformance relation can only assess behavioral equivalence between the
learned hypothesis and the SUL depending on the generated test suite. In practice, there
are several methods to generate such test suites for conformance testing. The generation of
a test suite may depend on state or transition coverage, or pure randomness. There are also
conformance testing techniques such as the W-Method [39, 186] that provide guarantees up
to a fixed number of states with the drawback that the size of the test suite is exponential
according to the number of states of the black-box system. Thus, deciding which model-based
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testing technique to use to generate the test suite depends on the goal of automata learning.
For example, if the model is only required for a first analysis or if it must provide any strict
guarantees about conformance.

Learning Mealy Machines

The MAT framework has been extended for several modeling formalisms including Mealy ma-
chines [89, 113, 162]. Figure 2.3 shows the adaptions for learning Mealy machines. Instead
of asking whether a word is a member of the language, the learner asks for the corresponding
output sequences on a given input. Therefore, we write output queries instead of membership
queries.

Based on the equivalence relation of two Mealy machines, a counterexample for the confor-
mance between the hypothesis and the SUL would be an input sequence where the observed
output sequences are different. Let M = 〈Q, q0, I, O, δ, λ〉 be the inferred Mealy machine and
MSUL = 〈Q′, q′0, I ′, O′, δ′, λ′〉 the unknown Mealy machine that correctly represents the SUL.
A counterexample for the conformance between M and M′ is an input sequence sI where the
λ∗(q0, s

I) 6= λ′∗(q′0, s
I). With respect to Equation 2.1, a test case is a trace that includes for an

input sequence the outputs defined in the learned hypothesis. A test case passes if the observed
output sequence on the SUL is equivalent, otherwise, the test case fails.

Learning with L∗

The MAT framework serves as a base for the L∗ algorithm. The learner in the L∗ algorithm fills
a database using a table-based structure. The table is called observation table.

Definition 2 (Observation Table) An observation table T for learning a Mealy machine
M = 〈Q, q0, I, O, δ, λ〉 is a triplet 〈Γ, E, T 〉, with

• the prefix-closed set Γ ⊆ I∗,

• the suffix-closed set E ⊆ I+, and

• the output mapping T : Γ× E → O∗.

Furthermore, we define that Γ = ΓS ∪ ΓP , where ΓS ∩ ΓP = ∅ and ΓP ⊆ ΓS · I. Each
element γ ∈ Γ identifies a row in the table. We write γ ∼= γ′ for two rows γ, γ′ ∈ Γ that are
equal, where ∀e ∈ E : T (γ, e) = T (γ′, e) holds. A row identifies a state in the automaton. If
two rows γ, γ′ ∈ Γ are equal, they identify the same state. The set ΓS contains at least one
row for each state of the automaton learned so far. Note that an input sequence of γ ∈ Γ leads
to the corresponding states in the Mealy machine when executed from the initial state. Thus,
representing an access sequence of the represented states. The set ΓP is used to identify further
transitions between the states. To identify the state and output transition for a state that is
accessed by γ ∈ ΓS and input i ∈ I, we look up in Γ the concatenation γ · i. The target state is
then the state that is reached with γ′ ∈ ΓS such that γ · i ∼= γ′ holds. The corresponding output
can be looked up in the mapping T (γ, i).

During learning, the table is filled with the outputs by performing output queries. We fill
the values for the mapping T by querying each combination of γ · e, where γ ∈ Γ and e ∈ E.
The suffix of the query output with length |e| is then set for T (γ, e).

Example 3 (Observation Table for Figure 2.1) Table 2.1 shows an observation table that
is generated during learning the Mealy machines of the publish/subscribe protocol that is depicted
in Figure 2.1. The set ΓS includes three input sequences, indicating the three states of the Mealy
machine M = 〈Q, q0, I, O, δ, λ〉. For example, if we execute on the Mealy machine in Figure 2.1
the input sequence of the third row of the table γ = connect · subscribe we would reach q2, i.e.,

18



Table 2.1: Observation table generated during learning the publish/subscribe protocol shown in
Figure 2.1.

Γ/E
E

connect subscribe publish unsubscribe

ΓS

ε ack none none none
connect closed ack ack ack
connect · subscribe closed ack message ack

ΓP

subscribe ack none none ack
publish ack none none none
unsubscribe ack none none none
connect · connect ack none none none
connect · publish closed ack ack ack
connect · unsubscribe closed ack ack ack
connect · subscribe · connect ack none none none
connect · subscribe · subscribe closed ack message ack
connect · subscribe · publish closed ack message ack
connect · subscribe · unsubscribe closed ack ack ack

δ∗(q0, connect · subscribe) = q2. If we concatenate to the input sequence γ the input connect, the
table shows us that we enter state q0 since connect · subscribe · connect ∼= ε. The rows map to the
same state since for all entries in E, i.e., connect, subscribe, publish and unsubscribe, the table
defines the same outputs: ack, none, none and none, respectively. We observe the output closed,
corresponding to our mapping T (connect · subscribe, connect) = closed.

Algorithm 1 shows an L∗ implementation of the learner. Algorithm 1 takes as input the SUL
and the input alphabet. Note that the learner only requires an interface to the SUL through
which the learner can perform output queries and observe the corresponding outputs. Even
though the algorithm learns a Mealy machine, the structure of this algorithm follows the basic
structure of all L∗-based algorithms for different modeling formalisms.

The algorithm starts by initializing the observation table in Line 1, where ΓS = {ε} and
E = I. After that, the iterative learning procedure is performed from Line 2 to Line 19. First,
the learner executes all membership queries to fill each cell in the observation table (Line 3).
Then, Line 4 checks if the table fulfills two properties: closedness and consistency. The table is
closed if ∀γP ∈ ΓP , ∃γS ∈ ΓS : γP ∼= γS . In other words, the table is not closed if ΓP contains
a row that is not in ΓS . If this is the case, we have explored a new state of our automaton that
needs to be added to ΓS . To close the table, the missing row γP ∈ ΓP is moved to ΓS and ΓP is
extended by γP · i, for each input i ∈ I. The observation table is made closed in lines 5–7. The
table is consistent if ∀γ, γ′ ∈ Γ, ∀i ∈ I : γ ∼= γ′ ⇒ γ · i ∼= γ′ · i. This is, if two rows are equal,
i.e., denote the same state, then appending any input must result in the same state. We check
consistency in Line 9. If the table is not consistent, then E is not sufficient to distinguish states
appropriately. To make the table consistent, we need to extend E with an entry i · e with e ∈ E,
where λ∗(γ · i · e) 6= λ∗(γ′ · i · e). The extension of E by i · e enables now to distinguish in the
observation table the two states identified by γ and γ′. This is done in Line 10. In Line 11, we
perform all output queries that are necessary to fill the empty cells of the updated observation
table. After all output queries are performed to fill the empty cells of the table, and the table
is finally closed and consistent, the algorithm generates a hypothesis in Line 14.

The hypothesis is then proposed to the equivalence oracle. In Line 15, the equivalence
between the learned hypothesis and the SUL is checked. As explained in Section 2.2.2, we use
model-based testing techniques to check if the behavior of the SUL conforms to the proposed
hypothesis. The method equivalence query(M,SUL) takes the current hypothesis and the
interface to the SUL as input. The method returns two values: verdict and cex . The variable
verdict is a Boolean variable that indicates whether the conformance relation is satisfied, i.e.,
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Algorithm 1 L∗ algorithm for Mealy machines

Input: black-box access to SUL SUL, input alphabet I
Output: learned Mealy machine M

1: T ← init table(I)
2: do
3: T ← fill table(T ,SUL)
4: while ¬(closed(T ) ∧ consistent(T )) do
5: if ¬closed(T ) then
6: T ← make closed(T )
7: T ← fill table(T ,SUL)
8: end if
9: if ¬consistent(T ) then

10: T ← make consistent(T )
11: T ← fill table(T ,SUL)
12: end if
13: end while
14: M← create hypothesis(T )
15: verdict , cex ← equivalence query(M,SUL)
16: if ¬verdict then
17: T ← update table(T , cex )
18: end if
19: while ¬verdict
20: return M

whether all test cases evaluate to pass. In the case at least one test case evaluates to fail, the
method assigns t the value false to the variable verdict and returns a counterexample cex that
witnesses the behavioral difference betweenM and SUL. In the case of learning Mealy machines,
cex is an input sequence that yields a different output sequence when executed onM and SUL.
We check the value of verdict in Line 15, and if the proposed hypothesis does not conform to
the SUL, we use the returned cex in Line 17 to extend the observation table. There are several
techniques for extending an observation table with a found cex . In the original L∗ algorithm, all
prefixes of cex are added to the Γ set of the observation table. In other approaches, the suffixes
of cex are added to the E set.

The condition in the while-loop in Line 19 again uses the variable verdict . The learning
procedure is repeated until no counterexample is found for the conformance between the hy-
pothesis and SUL, i.e., until verdict evaluates to true. Otherwise, we start again at Line 3 by
performing further output queries required to improve the hypothesis according to the given
counterexample. Once we found a conforming hypothesis, the algorithm returns the conforming
hypothesis M in Line 20.

Learning with KV

A learner may use tree-based structures as an alternative to table based-structures. Kearns and
Vazirani [96] introduced a tree-based learning algorithm that also uses the MAT framework to
learn a behavioral model of a black-box system. In the remainder of this thesis, we refer to this
learning algorithm proposed by Kearns and Vazirani as KV. This algorithm provides the basis
for other table-based algorithms such as the TTT algorithm [89]. To define the KV algorithm,
we first require a definition of distinguishing sequences.

Definition 3 (Distinguishing Sequence) Let M = 〈Q, q0, I, O, δ, λ〉. We define an input
sequence sI ∈ I∗ as a distinguishing sequence for two states q, q′ ∈ Q if λ(q, sI) 6= λ(q′, sI) holds.

20



connect · subscribe connect

publish ε

unsubscribe

ack none

message ack

Figure 2.4: Example of a classification tree that can be used to create a Mealy machine repre-
senting the publish/subscribe protocol shown in Figure 2.1.

The learner in KV uses a classification tree to store the observations and construct the
hypothesis. In the following, we will present how classification trees can be used to learn Mealy
machines.

Definition 4 (Classification Tree) A classification tree TC is a pair 〈N , root〉, where N is
the set of nodes and root ∈ N is the root of the tree. A tree node n ∈ N can be represented
by a triplet 〈l ,C , π〉 with input sequence l ∈ I∗ as the label of the node, a set of nodes C ⊂ N
denoted as children, and an output mapping for the children of the node π : O∗ → N , where O is
the finite set of outputs. Let the parent of a node n ∈ N be another node n′ = 〈l ′,C ′, π′〉 ∈ N ,
where n ∈ C. Each node in the tree has exactly one parent, except the root node which has no
parent.

The semantics of the nodes in the classification tree depends on the number of children. If
the node has no children, i.e. is a leaf node, then the node defines a state in the automaton,
where the label of the node is an access sequence to the state. Thus, the number of leaf nodes in
the classification tree defines the number of states. The inner nodes, on the other hand, contain
input sequences that are distinguishing sequences.

Example 4 (Classification Tree) Figure 2.4 illustrates an example of a classification tree
that is used to learn the publish/subscribe protocol shown in Figure 2.1. White nodes indicate
inner nodes that contain a distinguishing sequence. Leaf nodes are colored in gray. The labels of
these nodes define access sequences to the three different states. Note that the access sequences
are identical to the set ΓS shown in Table 2.1.

Generation of a hypothesis. To derive a Mealy machine from a classification tree, KV uses
the sift operation, which simulates the execution of an input sequence on a Mealy machine to
determine the target state. Sifting an input sequence sI ∈ I∗ through the classification tree
starts at the root of the classification tree. Then, the label of the root node is appended to the
input sequence to be sifted. Let root = 〈l,C , π〉 be the root node. For sifting sI , we append to
sI the label of the root l which generates the input sequence sI · l. The learner then asks sI · l
as an output query to the SUL. The teacher returns an output sequence sO ∈ O∗. The suffix
of length |l| of the output sequence is then used to determine which edge of the tree to follow.
The same procedure is repeated with the next reached inner node, i.e., we again extend sI with
the label of the currently considered inner node. This procedure is repeated until a leaf node
is reached. The leaf node reached corresponds to the state the input sequence would reach if
executed on the Mealy machine.
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Algorithm 2 KV algorithm for Mealy machines

Input: black-box access to SUL SUL, input alphabet I
Output: learned Mealy machine M

1: M← create initial hypothesis(SUL, I)
2: verdict , cex ← equivalence query(M,SUL)
3: if ¬verdict then
4: TC ← init tree(SUL, cex )
5: end if
6: while ¬verdict do
7: M← create hypothesis(SUL, TC , I)
8: verdict , cex ← equivalence query(M,SUL)
9: if ¬verdict then

10: TC ← update tree(TC ,SUL, cex )
11: end if
12: end while
13: return M

Example 5 (Sifting) We want to sift connect · publish through the classification tree shown in
Figure 2.4. We start at the root node labeled with unsubscribe and append it to the sifted input
sequence. Querying the sequence connect · publish · unsubscribe on the SUL yields the output
sequence ack · ack · ack. Since the last output is ack, we follow the corresponding transition
and reach the inner node labeled with publish. We then query connect · publish · publish which
generates the output sequence ack · ack · ack. This leads us to the leaf node labeled with connect,
which corresponds to the state q1 in the Mealy machine shown in Figure 2.1. We also see that
δ∗(q0, connect · publish) = q1 holds.

To generate a Mealy machine from a classification tree, we define the set of states based on
the leaf nodes of the classification tree. To draw the transitions between the states, we sift each
access sequence of the state with each input from the input alphabet, which then leads to the
target state. The output label of the transition is determined by performing an output query.

KV algorithm. The goal of the KV algorithm is to create a classification tree that allows
us to derive a hypothesis that conforms to the SUL. Algorithm 2 defines the procedure of
the KV algorithm. The algorithm starts in Line 1 with the creation of an initial hypothesis.
The initial hypothesis consists of only one state, where all input transitions are self-loops. The
corresponding output labels are queried using output queries. In Line 2, this initial hypothesis
is then immediately proposed to the teacher by performing an equivalence query. The method
equivalence query is identical to the one described in Section 2.2.2. If the initial hypothesis
does not conform to the behavior of the SUL, the counterexample is used to initialize the
classification tree TC in Line 4. The root of the tree is labeled with the input sequence that
shows the difference between the initial hypothesis and the output produced by the SUL. The
input sequence distinguishes two states. For this, we initialize the tree with two leaf nodes,
which can be reached by the corresponding output sequence.

After the initialization procedure, we start the iterative learning procedure by executing the
loop from Line 6 to Line 10. First, we construct in Line 7 a hypothesis from the classification
tree, as described earlier in this section. We then test against the hypothesis the SUL in Line 8.
If verdict is false, we use the counterexample in Line 10 to update the tree. A counterexample
always shows that the current hypothesis does not have enough states to correctly model the
behavior of the SUL. Therefore, new states and distinguishing sequences are added to the
classification tree based on the counterexample. For more details on the algorithm, we refer the
reader to the work of Kearns and Vazirani [96].
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It should be noted that every sifting operation is likely to require several output queries
and that these output queries may be repeated whenever a hypothesis is constructed. There-
fore, the original KV algorithm uses a more concise data structure than L∗, but the number of
(required) interactions with the SUL could be larger due to the repeated output queries. How-
ever, this problem can be easily solved by caching queries that have already been performed, as
implemented in state-of-the-art learning libraries such as AALpy [129] or LearnLib [90].

Abstraction for Learning

For learning behavioral models of real systems, adaptions are required to make automata learning
feasible. Earlier in this chapter, we showed that the perfect equivalence oracle is being replaced
by model-based testing techniques. One problem that remains is that the complexity of automata
learning depends on the state space of the SUL and the number of possible inputs.

In particular, when the input alphabet is large, many output queries must be performed
and the underlying data structures grow immensely. For example, consider that the publish/-
subscribe protocol shown in Figure 2.1 represents an abstracted Mealy machine. In the real
system, a client can subscribe to various topics and publish messages containing any sequence
of characters. Learning such a system with all possible inputs would not be feasible.

Cho et al. [38] introduced the concept of learning a Mealy machine considering an abstracted
and therefore smaller input and output alphabet. In their work, they learn a model of a botnet
server using an interface that translates abstract inputs provided by queries from the learner
into concrete inputs that can be executed on the SUL. This interface then receives concrete
outputs from the SUL and translates them into abstract outputs that are used by the learning
algorithm. With this technique, the learned model formalizes the behavior of the SUL on a more
abstract level.

Aarts et al. [7] extend this abstraction concept by making the applied abstraction state-
dependent. For this purpose, they formalize a stateful mapper component that concretizes
received abstract inputs from the learning algorithm to concrete inputs that can be executed
on the SUL, where the abstraction performed depends on the current state of the mapper.
Vice versa, this is performed for the received outputs from the SUL. For the definition of an
abstraction component, we follow Definition 2 of Aarts et al. [2].

Definition 5 (Mapper) Let a tuple A = 〈I,O, IA, OA, R, r0,ΛI ,ΛO,∆〉 be an abstraction im-
plemented by a mapper component, where

• I and O are finite sets of concrete inputs and outputs,

• IA and OA are finite sets of abstract inputs and outputs,

• R is a set of states,

• r0 ∈ R is the initial state,

• ΛI : R× I → IA is an abstraction function for concrete inputs,

• ΛO : R×O → OA is an abstraction function for concrete outputs, and

• ∆: R× (I ∪O)→ R is a state transition function.

Aarts et al. [7] stress that A behaves deterministically. Their proposed mapper component
implements such an abstraction to concretize abstract input and abstract concrete outputs.
While abstracting outputs is straightforward in A, the concretization of inputs is not. To do
this, the mapper takes an abstract input iA ∈ IA from the learner and selects a concrete input
i ∈ I according to the input abstraction function ΛI such that ΛI(r, i) = iA holds, where
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Figure 2.5: An extended MAT framework with a mapper component that translates abstract
inputs into concrete inputs that can be executed on the SUL. Inversely, the received concrete
outputs are translated into abstract outputs. The figure is based on the MAT framework pre-
sented by Aichernig et al. [8]

.

r ∈ R is the current state of the mapper. Note that the mapper selects the concrete input non-
deterministically. However, according to Aarts et al. [2], a mapper for learning Mealy machines
must be designed to simulate deterministic behavior. Hence, the implementation of the mapper
must ensure that the concretizations are chosen such that the observations are deterministic.

Figure 2.5 illustrates how the mapper can be included in the MAT framework. The mapper
can be seen as a wrapper that encapsulates the interface of the SUL. Therefore, every interaction
with the SUL is parsed and processed by the mapper. The mapper implements the concretization
and abstraction function for translating the received inputs and outputs.

Example 6 (Mapper) Assuming that Figure 2.1 represents an abstracted model of the under-
lying SUL, we can define an example mapper for learning this model. Consider that different
publish messages can be sent to specific topics. Let publish(topic,message) be a publish message,
where topic identifies a topic filter and message the published message. Both are sequences of
Unicode characters. A concrete publish message would be publish(office/temperature, 10.5).
Similar to publish messages, subscribe and unsubscribe messages can be performed for a specific
topic. Therefore, we consider subscribe(topic) and unsubscribe(topic) as additional concrete in-
puts, where topic is again an arbitrary sequence of characters. Corresponding to the automaton
in Figure 2.1, the abstract inputs would be IA = {connect, publish, subscribe, unsubscribe} and
the abstract outputs OA = {none, ack,message}. The concrete inputs would be I = {connect,
publish(topic,message), subscribe(topic), unsubscribe(topic)} and the outputs O = {none, ack,
message}, where message and topic are any character sequences. The mapper then translates
the inputs and outputs straightforwardly, e.g., the abstract input publish would be translated into
an instance of publish(topic, message). To receive messages of subscribed topics, the mapper
must keep track of the subscribed topic. Hence, the mapper considers different states for each
subscribed topic.

The used mappers in this thesis are manually created. However, in the literature [4] there
are also concepts for the automatic generation of abstractions.
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Figure 2.6: An application scenario for the MQTT protocol in a smart home scenario with
two clients. The heating system subscribes to all temperature topics. The thermometer in the
office sends publish messages including the measured temperature. The broker is responsible for
distributing the messages in the MQTT network.

2.3 Communication Protocols

The following chapter introduces the main case study subjects that are used to evaluate the
methods presented in this thesis. Since the main focus of this thesis is on developing methods
for increasing the dependability in the IoT, we focus on communication protocols that are
popular in the IoT, e.g., Message Queuing Telemetry Transport (MQTT) and Bluetooth Low
Energy (BLE), but we also examine protocols that have a large impact on securing an IoT
network, like VPN protocols.

2.3.1 Message Queuing Telemetry Transport (MQTT)

The Message Queuing Telemetry Transport (MQTT) protocol [22] is a widely used publish/-
subscribe protocol. The protocol is especially popular in the IoT due to its lightweight design.

The basic MQTT setup considers two members: an MQTT broker and an MQTT client. A
broker is a central unit responsible for managing connections and subscriptions of clients and
distributing published messages. Thus, the broker is essential for the functionality of an MQTT
network. Clients can connect to brokers, subscribe to specific topics, and publish messages on
specific topics.

Figure 2.6 illustrates a typical application scenario for the MQTT protocol for a home au-
tomation scenario. In this application, a heating system listens for published temperature mes-
sages. A thermometer publishes its measurements for the office space. The broker is responsible
for forwarding the received published messages to all subscribed clients.

The MQTT protocol organizes topics in a level-based structure. Where levels are separated
by a slash (‘/’). For example, Figure 2.6 shows that the thermometer publishes to the topic
office/temperature, where the topic filter has two levels: office and temperature. The
MQTT client in the heating system subscribes to the topic filter +/temperature, where + is
a wildcard character for a single level. Therefore, the heating system receives all messages on
topics that are published to topics that have two levels and the last level is temperature.

The reliability and robustness of an MQTT network stand and fall with the correct function-
ality of an MQTT broker. Since the MQTT broker is the central node in an MQTT network,
it must behave according to the specification, does not introduce any security issues, and is not
vulnerable to malicious clients. Therefore, the presented methods target the analysis of MQTT
brokers.

2.3.2 Bluetooth Low Energy (BLE)

Bluetooth is a popular wireless short-range communication protocol. With the introduction of
Bluetooth version 4.0, the standard offers an optional low-energy implementation that enables
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Figure 2.7: The different layers of the BLE stack. This figure is adapted from the illustration
provided by the Bluetooth SIG [194].

the usage of Bluetooth as a communication protocol in the IoT. The Bluetooth core specifica-
tion [87] distinguishes between Bluetooth Basic Rate (BR)/Enhanced Data Rate (EDR), also
known as Bluetooth Classic, and Bluetooth Low Energy (BLE), both of which are independent
protocols. Bluetooth Classic is mainly used for streaming larger amounts of data, such as audio
data. BLE has more a lightweight design and enables wireless short-range communication for
low-energy devices, such as sensors. In addition, BLE has other features such as broadcasting,
mesh network communication, and location.

The Bluetooth Special Interest Group (SIG) [88] reports that 4.9 billion Bluetooth devices
were shipped in 2022 and expects the number of annual shipments to increase to 7.6 billion
Bluetooth devices by 2027. The growth is primarily due to the increasing number of peripheral
devices using Bluetooth Classic and BLE, or BLE only. In the remainder of this thesis, we will
focus only on BLE since it has more applications in the IoT.

Figure 2.7 depicts the different layers of the BLE protocol stack. The BLE protocol stack
distinguishes between a host and a controller component. Technical reports from the Bluetooth
SIG [194] explain that the host is usually implemented by an operating system, while the con-
troller is implemented on a system on the chip. The stack consists of different layers, where
the lower layers are part of the controller component, and higher layers are implemented in the
host component. The controller and the host communicate through a host controller interface
(HCI). Each layer has a different responsibility. For example, the Link Layer (LL) manages the
various states of the BLE device, such as scanning for other devices, advertising, or establishing
a connection. The Attribute Protocol (ATT) manages attributes of the communication such as
the maximum transmission unit (MTU), and the Security Manager Protocol (SMP) is used to
establish an encrypted connection.

Figure 2.8 describes the connection procedure between two BLE devices. The devices have
different roles: One is referred to as the central device and the other is referred to as the
peripheral device. In the remainder of this thesis, we will refer to the central device as central
and to the peripheral device as peripheral. The peripheral broadcasts advertisements, indicating
that is ready to connect to another device. Therefore, the link layer of the peripheral is in the
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Figure 2.8: The message sequence diagram shows the BLE connection and pairing procedure.
The central device initiates a connection to a peripheral that sends advertisements. After the
two devices are connected, the pairing procedure starts, where they exchange keys to estab-
lish an encrypted communication. The exchanged messages in parenthesis (〈. . .〉) indicate that
communication is encrypted. The figure is taken from Pferscher and Aichernig [149].
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advertising state. The central enters the scanning state by searching for these advertisements.
When such advertisements are found, the central initiates the connection by sending a connection
request. When the peripheral is ready for a connection, it responds with a connection response.
Both devices are then in the connection state. Then the central and the peripheral negotiate
some parameters such as the Bluetooth version used, the MTU, or other characteristics of the
connection. Note that not only the central can send parameter requests, but also the peripheral
can send requests to which the central must respond. The order of these parameter requests is
not fixed. After all requested parameters have been negotiated, the pairing procedure can begin.
A connection can be terminated by both communicating parties by performing a termination
indication termination ind.

The pairing procedure is used to establish encrypted communication. For this purpose, the
central and the peripheral exchange keys. In this pairing procedure, the central is usually referred
to as the initiator, and the peripheral as the responder. The pairing procedure is initiated by
the central with a pairing request that contains the parameters of the pairing procedure. The
pairing request specifies, e.g., the type of pairing procedure to be performed, the length of the
encryption key, and the authentication methods. The Bluetooth standard distinguishes between
two different pairing modes: legacy and secure pairing.

The legacy pairing procedure is shown in Figure 2.8, where the central and the peripheral
exchange values to establish a session key that is then used to encrypt the communication.
For this purpose, each of them calculates a confirmation value (confirm). The confirmation
value is based on previous connection parameters, a random value, and a temporary key that
is initially set to zero. Then the central and the peripheral exchange their confirmation values.
First, the peripheral checks the confirmation value of the initiator confirmi considering also the
received random value randomi. If the confirmation value can be recalculated by the responder,
it forwards its own random value randomr to the initiator. The initiator then checks confirmr and
sends its part of the session key to the peripheral. The peripheral then responds with its part and
also sends a request to start the encryption (start encryption req), which must be responded to
with an encrypted response (start encryption rsp). All the messages are encrypted with AES-
CCM [124]. Figure 2.8 shows encrypted messages with messages in angle brackets 〈. . .〉. Then,
further sensitive messages are exchanged over an encrypted communication channel. Encryption
can be terminated with the pause encryption request (pause encryption req). However, legacy
pairing is not required to include authentication and is vulnerable to man-in-the-middle attacks.

In secure pairing, the connected devices first exchange public keys and then use the Diffie-
Hellman [52] key exchange procedure to establish secure encrypted communication. Additional
methods for authentication can be used that require the other device to actively confirm that
devices are to be paired, e.g., by entering or confirming a short sequence of numbers.

In the remainder of this thesis, we will analyze the behavior of the peripheral devices, since
insight into these devices is usually limited. Therefore, the goal is to analyze the behavior of
black-box devices. Furthermore, the role of the peripheral is more testable since the central
controls the initiation of a connection and the pairing procedure.

2.3.3 IPsec Internet Key Exchange (IKEv1)

A VPN is an artificial network that enables secure communication over an insecure communica-
tion channel [135]. VPNs are used not only to prevent eavesdropping but also to allow external
access to internal network resources. During the COVID-19 pandemic, when people were forced
to stay home, access to an internal network became important for many companies and insti-
tutions overnight. Feldmann et al. [59] investigate the internet traffic during the COVID-19
pandemic, and their results showed that the amount of VPN traffic within the regular working
hours approximately doubled between February 2020 and March 2020. In addition, their results
show that VPN traffic decreased again after the first lockdown, but remained at a higher level
than before the pandemic.
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Figure 2.9: The message sequence diagram shows the messages exchanged between an initiator
and a responder to establish encrypted communication according to the IKEv1 specification [33].
The figure is taken from Pferscher et al. [150].

VPNs enable secure communication by using authenticated encryption schemes. One way
to establish secure communication is to use protocols defined in the Internet Protocol Secu-
rity (IPsec) protocol suite. IPsec includes several protocols that define how encryption and
authentication can be established securely. In this thesis, we focus on the Internet Key Ex-
change (IKE) protocol which is part of the IPsec protocol suite. The IKE protocol defines how
to exchange keys that are later used to encrypt communication.

The IKE protocol exists in two versions: IKEv1 [33] and IKEv2 [95]. IKEv1 defines the
first version of the IKE protocol. Due to its complicated setup, a second version, IKEv2, was
introduced. Even though IKEv2 is the recommended version, IKEv1 is still used. For example,
many routers of the popular FRITZ!Box router series from the German company AVM solely
support IKEv1 [70]. In this thesis, we only consider IKEv1, since the setup is more complicated
and thus more error-prone. Therefore, it provides a more interesting target for our methodology.

Figure 2.9 shows the message sequence diagram for establishing a secure communication
channel according to the IKEv1 protocol. IKEv1 distinguishes between two communicating
members: the initiator and the responder. In practice, the initiator could be represented by a
VPN client, and the responder is represented by a VPN server. IKEv1 can be divided into two
phases. The first phase is called main mode and is followed by the second phase, the quick mode.
The goal of the main mode is to share information to exchange an encryption key based on the
Internet Security Association and Key Management Protocol (ISAKMP) protocol. The initiator
first proposes a set of Security Associations (SAs). An SA is a specification that describes which
encryption algorithms should be applied in which configuration. The responder then replies to
the request by sending a single SA with the selected configuration.

The Diffie-Hellman key exchange procedure [52] is based on the negotiated ISAKMP SA. For
this purpose, both the initiator and the responder generate a key and exchange the public parts
of their generated key and their used nonces. The final step of the main mode is authentication,
where the initiator and the responder exchange hash values that are generated from previously
sent messages and the shared secret generated using Diffie-Hellman. Authorization can be based
on either a pre-shared key (PSK) or certificates.

From now on, all subsequent communication is encrypted based on the key generated in
the main mode. In IKEv1, the communicating parties now enter the quick mode, which is
used to share keying material for subsequent protocols in the IPsec protocol suite, e.g., for the
Authentication Header (AH) or Encapsulating Security Payload (ESP) protocols. This mode
starts similar to the main mode, where the initiator proposes a set of SAs, and the responder

29



replies with an accepted SA proposal. Finally, the initiator sends a hash value of the previous
messages, which serves as a confirmation for the SA provided.
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Chapter 3

Efficient Automata Learning

Declaration of Resources

This chapter provides additional background on existing work. Section 3.1 describes
improvements for the L∗ algorithm proposed by Rivest and Schapire [156]. Section 3.2
discusses caching strategies in existing automata learning libraries. Section 3.3 introduces
specific improvements for the KV algorithm that were implemented and evaluated in the
Bachelor’s thesis of Maximilian Rindler [155], which was co-supervised by the author of
this thesis.

The following chapter describes improvements in the application of efficient automata learn-
ing. These improvements are mainly aimed at reducing the interaction with the system under
learning (SUL). In practice, communication with the SUL is considered expensive in terms of
the time required to execute inputs and reset the SUL. In particular, for learning communica-
tion protocols reducing the number of queries is beneficial since messages may be lost or arrive
delayed. Thus, the overall goal is to minimize communication with SUL without comprising the
expressiveness of the learned behavioral model.

Interaction with the SUL is required for active automata learning. Therefore, only improve-
ments for active algorithms are discussed in this chapter. Furthermore, the following improve-
ments are only applicable to learning deterministic systems. Specific improvements for active
learning of non-deterministic systems are addressed separately in Chapter 8.

First, general improvements for L∗ [17] and KV [96] are presented in this chapter. For this
purpose, Section 3.1 and Section 3.2 briefly explain improvements that are already available in
state-of-the-art automata learning libraries such as AALpy [129] or LearnLib [90]. Section 3.3
presents specific improvements for KV that have been implemented specifically in AALpy.

3.1 Counterexample Postprocessing

Rivest and Schapire [156] introduce an automata learning algorithm that learns a model without
requiring the SUL to be reset during learning. Even though their resetless learning algorithm is
not applied in this thesis, many state-of-the-art learning algorithms implement the improvements
to the L∗ algorithm proposed also in the work of Rivest and Schapire.

Their proposed improvements are based on the fact that a counterexample received from
the teacher indicates that the provided hypothesis does not have enough states to model the
behavior adequately. Let (ΓS ∪ ΓP , E, T ) be the observation table maintained by the learner.
In the original L∗ algorithm, the counterexample and its prefixes would be added to the ΓS
set to extend the state space. In contrast, Rivest and Schapire suggest adding a distinguishing
sequence to the E set. That the provided counterexample must contain such a distinguishing
sequence follows from the fact that executing it on the hypothesis and on the SUL leads to
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different outputs. However, adding all suffixes of the received counterexample to the E set may
add redundant information. Hence, we want to post-process the received counterexample to
obtain a shorter distinguishing sequence.

We assume that we learn a hypothesis in the form of a Mealy machine H = 〈Q, q0, I, O, δ, λ〉
and let M = 〈Q′, q′0, I, O, δ′, λ′〉 be the unknown Mealy machine representing the SUL. The
provided counterexample is an input sequence c ∈ I∗ showing that λ∗(q0, c) 6= λ′∗(q0, c). The
goal is to find a partition of a given counterexample c = u · a · v such that v is a sufficient
distinguishing sequence, with u, v ∈ I∗ and a ∈ I. Let s ∈ I∗ be the access sequence of a state
q ∈ Q reached by executing u on the hypothesis H, i.e., δ∗(q0, u) = δ∗(q0, s) = q. The access
sequence of this state can be retrieved from ΓS . Using the same technique, we obtain s′ ∈ I∗
which is the access sequence of q′ ∈ Q where δ∗(q0, u · a) = δ∗(q0, s

′) = q′. The input sequence
v is a distinguishing sequence if λ′∗(q0, s · a · v) 6= λ′∗(q0, s

′ · v). To find such a partition of
c, a binary search can be applied. The shares are then executed on the SUL until a sufficient
partition is found. Then all suffixes of v are added to E.

This approach can also be applied to KV, where the access sequences are retrieved from the
leave nodes of the classification tree. The retrieved distinguishing sequence v is then added to
the classification tree as an internal node.

3.2 Caching

State-of-the-art learning libraries such as LearnLib [90] and AALpy [129] implement caching
techniques to reduce the number of queries performed during active automata learning on the
SUL. The cache represents a data structure where performed queries and observations are
stored. Instead of repeatedly executing the same queries or parts of them on the SUL, the
corresponding results are looked up in the cache. In this way, the number of queries executed
on the SUL can be reduced. Reducing queries is especially essential when query execution takes
a long time, resetting the system is tedious, or query execution is not reliable. Hence, learning
real systems benefits greatly from such caching techniques.

For learning Mealy machines, caching strategies simply store the executed output queries
and their corresponding query output in specific data structures. For deterministic systems, the
repetition of queries or their prefix is not required, since the output sequence must be the same.
However, especially for larger systems, it becomes important that queries are stored efficiently to
remain memory efficient. For example, the learning library AALpy stores all performed queries
in a tree-based data structure.

In the MAT framework, the cache represents an additional component implemented by the
learner that checks for each requested output query, if it already exists in the cache. If it is not,
the query is executed on the SUL and then added to the cache. In learning is done using an
abstraction layer, as described in Section 2.2.2, the cache stores abstracted output queries.

Later in this thesis, we will utilize the cache for checking and handling non-deterministic
behavior.

3.3 KV Improvements

Section 2.2.2 presents the learning algorithm proposed by Kearns and Vazirani [96]. The ad-
vantage of KV over L∗ is that KV uses a more concise data structure to distinguish states.
However, Aichernig et al. [15] show that KV requires a lot of interaction with the SUL, es-
pecially when the counterexamples are long and the state space is large. In their work, they
compared different learning algorithms and conformance testing techniques implemented in the
automata learning library LearnLib [90].

The learning library AALpy [129] provides an improved version of the learning algorithm KV
since version v1.3.0. The improvements over the classical implementation can be divided into
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the following three categories: (1) reuse of counterexamples, (2) processing of counterexamples,
and (3) caching mechanisms.

3.3.1 Counterexample Reuse

The algorithmic design of the KV algorithm usually implies more learning rounds than for
L∗. A learning round is always terminated by an equivalence query, which we implement with
conformance testing. Since performing conformance testing may require executing a large set of
output queries, we aim to minimize the number of required rounds of conformance testing. For
this purpose, our KV implementation slightly adapts the treatment of counterexamples.

A counterexample is an input sequence that shows a different output sequence when exe-
cuted on the SUL and the hypothesis provided. In the original KV implementation, we look for
the first input in the counterexample that reveals the behavioral difference. A new hypothesis is
then created and a new equivalence query is performed. However, the previously provided coun-
terexample may still contain another input showing that the hypothesis is still non-conforming.
Instead of querying a new counterexample, we adapt the hypothesis as long as it conformance
to the previously provided counterexample. In this way, we might save rounds of conformance
testing.

3.3.2 Counterexample Postprocessing

Similar to L∗, KV also benefits from shorter counterexamples. Long counterexamples tend to
add longer distinguishing suffixes to the classification tree used in KV. Consequently, long dis-
tinguishing sequences in the classification tree lead to long input sequences that must be queried
during the sifting procedure. For this, the counterexample postprocessing proposed by Rivest
and Schapire [156] as described in Section 3.1 can help to shorten the received counterexamples.
As a result, input sequences of the inner nodes of the classification tree are shorter and sifting
requires fewer executions of inputs.

3.3.3 Caching

AALpy implements three different caches for KV. In addition to the cache described in Sec-
tion 3.2, two additional caches are added: the sifting cache and the output-query cache.

The sifting cache aims to reduce the number of queries required while sifting an input se-
quence through the classification tree. Each time a hypothesis is constructed, many sifting
operations are required to define the state transition function, with each sifting operation in-
cluding multiple output queries. The sifting cache is used to avoid sifting operations for input
sequences that always lead to the same leaf node. For this purpose, the algorithm stores ad-
ditionally a mapping from input sequences to leaf nodes. With this mapping, cached input
sequences can be directly assigned to a state in the automaton and do not need to be sifted
again. The sifting cache for the corresponding nodes must be updated whenever leaf nodes get
a new distinguishing sequence as a parent.

In addition to state transitions, the outputs of the output functions must also be repeatedly
queried. To avoid these query repetitions, the output-query cache is used. Even though these
output queries would be stored in the tree-based caching structure as presented in Section 3.2,
the operations in the tree still require more resources than a simple lookup. Therefore, the
output-query cache maps input sequences to their last output in order to quickly obtain the
output for the transition. Note that this cache in combination with other caching mechanisms
does not necessarily decrease the interaction with the SUL, but rather reduces the runtime of
the algorithm.
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Chapter 4

Learning of
Bluetooth Low Energy Devices

Declaration of Resources

This chapter is based on the paper “Fingerprinting Bluetooth Low Energy Devices via
Active Automata Learning” [147] presented at FM 2021 and the article “Fingerprinting
and Analysis of Bluetooth Devices with Automata Learning” published in the journal
“Formal Methods in System Design” [149] in May 2023. The presented work also received
support from Maximilian Schuh, who gave advice on the Bluetooth hardware. The authors
of the framework SweynTooth [67] also supported this work by the provision of an open
source BLE interface.

4.1 Introduction

In this chapter, we want to outline an automata learning framework that learns Bluetooth Low
Energy (BLE) stack implementations from real physical devices. Automata learning has proven
itself as a convenient tool to learn communication protocols like (D)TLS [50, 63], TCP [61],
SSH [62], MQTT [170], or the 802.11 4-way handshake of the WiFi protocol [168]. However, less
work exists that learned communication protocol implementation on real hardware. Instead,
software components have commonly been simulated in artificial environments.

Bluetooth is a popular protocol for wireless short-distance communication. As stated in
Section 2.3.2, the number of annually shipped Bluetooth devices will grow to 7.6 billion devices.
In particular, the number of low-energy devices that use BLE for wireless communication will
grow [88]. This has also been indicated by a technical report from Texas Instruments Inc. [103]
which advertises BLE as a replacement for wired communication in vehicles. In their given
scenario, BLE is used, e.g., for car access, personalized configurations, or to collect sensor data.

Based on this scenario presented by Texas Instruments Inc. [103], we motivate the develop-
ment of approaches that enable the automatic analysis and testing of BLE devices. In a vehicle,
many heterogenous components communicate with each other. Usually, these components are
developed by third-party suppliers, where the insight into the component is limited. For exam-
ple, it might not be known which BLE device is built into a car’s side mirror sensor. To ensure
that such components do not introduce any faults, automatic testing and verification techniques
are required.

Behavioral models are a useful tool for system analysis. They form the basis for model-
based testing and verification technique. However, the availability of accurate models is usually
limited. Creating models manually is a tedious and error-prone process, which must be repeated
each time the system is updated. In the case of the Bluetooth protocol, the specification [87]
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Figure 4.1: General learning framework for learning behavioral models of BLE devices. A
black-box BLE device serves as SUL.

has more than 3 000 pages, but still allows for a lot of freedom in the actual implementations.

This chapter shows how active automata learning can be used to automatically identify
behavioral models of BLE devices. Figure 4.1 gives an overview of the learning setup for BLE
devices. This chapter introduces the developed active automata learning framework. The active
automata learning framework consists of a learning interface that allows sending BLE requests
to the SUL. The SUL itself is a BLE device from which we identify the behavioral model that
represents the BLE stack implementation. The received BLE responses are then used by the
learning algorithm to construct the behavioral model. We evaluate this learning setup on six
different BLE devices. The learned models show behavioral differences within all the models.
Furthermore, we also observe that one device crashes when executing a sequence of valid BLE
packets.

The chapter is organized as follows. Section 4.2 explains the methodology for automatically
learning behavioral models of BLE devices. Section 4.3 presents the evaluation performed on
six BLE devices, including different levels of the BLE stack. Furthermore, we show how the
learned models can be used to fingerprint black-box devices. Finally, Section 4.4 concludes this
chapter with a summary and a discussion of the results.

4.2 Learning Setup

This section describes the developed automata learning framework to learn behavioral models
of BLE devices. Figure 4.2 shows the following five components of the learning framework and
their interaction with each other: (1) the learning algorithm, (2) the learning interface, (3) the
mapper, (4) the BLE central device, and (5) the BLE peripheral device. The learning algorithm
(1) generates the behavioral model using active automata learning. The learning algorithm
retrieves the necessary information from the learning interface for this purpose. The learning
interface (2) is responsible for taking care of any unexpected observations received from the
device, e.g., non-deterministic behavior due to message loss. The mapper (3) is responsible for
abstraction and interacts with the BLE central device. The BLE central device (4) is controlled
by the framework to send and receive BLE packets from the BLE peripheral device. The BLE
peripheral device (5) is the SUL from which we learn the behavioral model. In the remainder,
we refer to the central device as central and to the peripheral device as peripheral.

In Section 2.3.2, we provided a message sequence diagram (Figure 2.8) describing the con-
nection and pairing procedure between two BLE devices. For this case study, we learn the
behavioral model of the peripheral, since it is easier to control the central that initiates the con-
nection and pairing procedure. The message sequence diagram in Figure 2.8 shows 13 different
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BLE packets that can be considered as inputs for learning. Learning real systems, especially if
the communication is wireless, would hardly be feasible with such a large input alphabet. The
biggest problem, in this case, is that long sequences of unexpected inputs can cause timeouts,
where the peripheral enters and remains in a standby state. For learning the connection and
pairing procedure of BLE devices, this can especially be a problem, e.g., if we perform many
inputs that belong to the connection procedure during the pairing procedure. To solve this
problem, we separate the input alphabet in a logical way, where the first subset considers the
inputs for the connection procedure and the second considers the inputs for the pairing proce-
dure. Both models show the initialization of the pairing procedure, which is a behavioral overlap
that connects both models. In this way, we learn two models, one formalizing the connection
behavior and the other the pairing behavior.

4.2.1 Learning Algorithm

For learning behavioral models of BLE devices, we use active automata learning algorithms.
The connection and pairing procedure is represented by a request/response scheme, which cor-
responds to the behavior of a reactive system. Additionally, we assume that the BLE devices
behave deterministically. As motivated in Section 2.3.1, we can model the deterministic behavior
of reactive systems with Mealy machines.

In the BLE protocol, requests can be performed by the initiator of the connection but also
by the responder. The message sequence diagram in Figure 2.8 shows that the peripheral can
also send requests for connection parameters that must be answered by the central. No reaction
to these requests from the peripheral could limit the observable state space. Consequently, we
also include response messages as inputs for learning the behavioral model. These responses are
treated as normal inputs, meaning that they are performed even if they are not requested.

We applied the improved version of the L∗ algorithm [17] for Mealy machines with the coun-
terexample processing of Rivest and Schapire [156]. This learning setup was chosen according
to the results of Aichernig et al. [15]. They recommend this setup as one that requires fewer
queries but still learns correctly.

For testing the equivalence between the learned hypothesis and the SUL, we use conformance
testing as described in Section 2.2.2. To generate the finite test suite, we use an approach
that provides state coverage but also includes randomness to enable the exploration of new
behavior. For this, we build sequences that traverse to particular states and then execute a
random sequence of inputs. For reaching a particular state, we can use the access sequences
that are derived during active learning. The number of random walks per state is defined by
ntest ∈ N and the length of the random input sequence by nlen ∈ N.

The learning algorithm interacts only with the learning interface. This interaction consists
of the learning algorithm sending output queries to the learning interface. Then, the learning
algorithm receives the corresponding query outputs back from the learning interface.
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4.2.2 Learning Interface

The learning interface is responsible for providing the learning algorithm with representative
query outputs from the received output queries. Representative, when learning BLE devices,
means that the query outputs do not contain any outputs that show communication errors
between the central and the peripheral device. If such a communication error is detected, the
learning interface should take countermeasures to generate the correct query output.

In addition, learning behavioral models of physical devices should require as few queries as
possible. The interaction with the SUL might be expensive in terms of time required to reset the
SUL, execute an input and observe an output. Additionally, reducing the number of interactions
is useful since every performed request introduces the risk that BLE packets might get lost or
arrive delayed, which introduces non-deterministic behavior. To reduce the interaction with the
SUL, we use the proposed improvements by Rivest and Schapire [156]. Furthermore, we also
save every performed query in a cache as described in Section 3.2. Moreover, the cache is also
used to handle non-deterministic behavior.

The tasks of the learning interface can be divided into two areas: Ensuring a reliable reset
of the SUL and handling non-deterministic behavior.

Reliable Reset. The learning algorithm L∗ requires that the SUL is reset to the same initial
state before performing a query, i.e., an output query is always assumed to be performed starting
from an initial state. This requirement can be challenging when learning behavioral models of
physical devices. A manual reset after each query would be tedious and time consuming, which
would hamper the applicability and feasibility of the learning approach. A physical or hard reset
for BLE devices would mean that either a reset button on the device is pushed or the power
supply is removed and added again.

Since such a hard reset is infeasible, we reset a connection by sending BLE requests from
the central to the peripheral. According to the BLE specification [87], a termination request
(termination request) should abort an established connection. The central performs a termina-
tion request to reset the connection to the peripheral after executing the last input of a query.
Another method to reset a connection would be that the central scans again for advertisements,
i.e., it sends a scan request to the peripheral. We assume that the peripheral returns to the
advertising state after a connection has been reset.

Some of the tested devices enter a standby state, after a certain amount of time without any
interaction. This can be a problem in learning, where long input sequences are sent, but no valid
connection to the peripheral has been established. To avoid such timeouts, we always establish
a valid connection between the central and the peripheral after a reset has been performed. For
establishing this connection, the central performs a scan and connection request and immediately
aborts the connection by sending another scan request to the peripheral. We expect to receive
a response to each of these requests, which allows us to check whether the peripheral is still
reachable.

We call the event where we do not receive a response to a connection request a connection
error. In case of a connection error, we repeat the establishment of a connection at most
nerror ∈ N times. If no connection can be established within nerror, we ask the user to perform
a hard reset on the device.

Modern learning libraries provide an interface that enables the implementation of resets via
methods that are executed before and after performing an output query. The methods are called
pre and post respectively. For learning the pairing procedure, we additionally perform in the
pre method all the requests that are necessary before the pairing procedure could be started.
This means the central initiates a connection and responds to all requests from the peripheral.
To reset the pairing procedure, we have to consider if the communication is encrypted. In this
case, we additionally send a request to pause the encryption. Afterwards, we terminate the
connection in any case using a termination request.
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Handling Non-Determinism. One challenge in learning behavioral models of communica-
tion protocols is that the observed behavior can be non-deterministic. In cases where the SUL
behaves non-deterministically, countermeasures are required to deal with the non-deterministic
observations. For learning BLE devices, we assume that the devices behave, in general, determin-
istically. Our case study shows that this assumption is problematic for some of the investigated
BLE devices. Furthermore, in Chapter 8 we will discuss an implementation that considers a more
relaxed assumption about non-deterministic behavior for learning communication protocols.

In the literature, non-deterministic behavior is a common problem in learning communication
protocols. Commonly proposed strategies [63, 170] consider the definition of proper timeouts
to wait for messages. Another approach [61] is to simply repeat queries a certain number of
times and then select the most commonly observed output. In the work of Fiterău-Broştean et
al. [63], they also introduce the concept of validating the observed value against cached values.
Following a similar idea, we also set timeouts for responses and use cached values to detect
non-determinism.

Example 7 (Non-deterministic Behavior in BLE) Consider that the central sends the fol-
lowing input sequence to the peripheral

scan req · connection req · feature rsp · pairing req.

A possible expected output sequence on this input sequence would be

ADV · FEATURE REQ · DATA · PAIRING RSP.

So the central scans for advertisements from the peripheral, the peripheral acknowledges the
connection request but sends a feature request to the central. The central then answers to the
feature request, where DATA refers to an empty BLE packet that is sent as a kind of keep-alive
message. Finally, the peripheral accepts the pairing request. However, we might observe the
following output sequence if the feature response from the central got lost

ADV · FEATURE REQ · DATA · PAIRING FAILED.

In this case, the pairing request was rejected since the previous parameter negotiation was not
completed. However, the difference in the output sequence was not directly evident from the lost
message, since the peripheral always sends keep-alive messages.

Repeating each output query multiple times would have a huge impact on the runtime.
Therefore, we prefer to repeat the query only in cases where we detect non-determinism. For
this purpose, we utilize the caching structure provided by the used learning library. The used
cache is organized in a tree-based structure, where nodes are labeled with outputs. In the case
we do not observe the expected output defined by the node, we repeat the query ncache ∈ N
times and then pick the most frequent output as the label for the node. However, to ensure that
our algorithm still terminates, we allow nodes to be updated a maximum number of observed
non-deterministic errors nnondet ∈ N.

The learning interface interacts with the learning algorithm to process received output queries
and provide the corresponding query outputs. Furthermore, the interface interacts with the
mapper component, sending single inputs that should be executed on the SUL and receiving the
corresponding outputs.

4.2.3 Mapper

Learning a behavioral model of a BLE device considering all possible BLE packets would not
be feasible in a certain amount of time. To overcome this problem, we introduce an abstraction
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in the form of a mapper component as explained in Section 2.2.2. Hence, the learned model
represents the behavior on a more abstract level.

The mapper translates abstract inputs it receives from the learning interface into concrete
BLE packets that can be sent from the central to the peripheral. The mapper receives the cor-
responding responses from the central, where it then forwards the response from the peripheral.
The response from the peripheral may contain several BLE packets. Hence, the mapper receives
a list of packets, which the mapper translates into one concrete output. For this purpose, the
received list is reduced to a set, which is then concatenated into a single string in alphabetical
order. This postprocessing is beneficial for possible non-deterministic behavior due to a different
order of transmissions.

For learning BLE devices, we consider the following abstract input alphabet for the connec-
tion procedure

IAC = {scan req, connection req, length req, length rsp, feature req, feature rsp,
mtu req, version req, legacy pairing req},

and the following abstract input alphabet for learning the pairing procedure

IAP = {legacy pairing req, confirm, random, encryption request, start encryption rsp}

For generating the concrete BLE packets, the packet manipulation library Scapy [158] has
been used. For the concretization of BLE packets, we consider the default values of the library.

Example 8 (Concretization for BLE) The abstract input length req would be translated to
the following concrete BLE packet following the Scapy syntax
BTLE/BTLE DATA/BTLE CTRL/LL LENGTH REQ(max tx bytes, . . .), where the packet
LL LENGTH REQ has field values such as max tx bytes which is translated to a concrete
value. The concrete values are selected based on the predefined values in Scapy, which conform
to standard values that are commonly accepted by the peripheral to establish a valid connection
and pairing.

Example 9 (Abstraction for BLE) After the central sends a concrete packet to the periph-
eral, the peripheral responds with several BLE packets. The central then forwards a list of received
BLE packets to the mapper. For example, the central provides the mapper with the following list
of BLE packets

[BTLE/BTLE DATA,
BTLE/BTLE DATA/BTLE CTRL/LL LENGTH REQ(. . .),
BTLE/BTLE DATA,
BTLE/BTLE DATA,
BTLE/BTLE DATA/L2CAP Hdr/ATT Hdr/ATT Exchange MTU Request(. . .),
BTLE/BTLE DATA,
BTLE/BTLE DATA]

The mapper then translates this list into the following abstract output
“ATT Exchange MTU Request|ATT Hdr|BTLE|BTLE CTRL|BTLE DATA|
L2CAP Hdr|LL LENGTH REQ” and forwards the abstract output to the learning interface.

Example 9 shows that the mapper provides rather long output strings. For the sake of sim-
plicity, we usually abbreviate the abstract output to shorter strings in the remainder of this
thesis. However, the translation to longer strings in the learned models should be straightfor-
ward. For example, instead of writing the long output of Example 9, we simply write
ATT Exchange MTU Request|LL LENGTH REQ instead.
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In addition, we require the mapper to be stateful for learning the pairing procedure. For
this purpose, the mapper keeps track if encryption is enabled or disabled. Hence, BLE packets
are encrypted if encryption is enabled and are decrypted before they are sent to the learning
interface. Furthermore, the mapper stores all intermediate generated and received values to
generate valid responses and the corresponding encryption key.

4.2.4 BLE Central

The central device is another BLE device that communicates with the peripheral. To send
manually crafted packets from the mapper to central, we flashed a BLE device with custom
firmware. The firmware and the driver implementation are taken from the SweynTooth [67]
repository.

After sending a BLE packet, the central collects responses from the peripheral. The central
collects packets by listening for packets that are addressed to the central. Since the peripheral
may respond with more than one BLE packet, the central collects a list of BLE packets. First,
the central listens nrsp

min ∈ N times for responses. The driver then checks if the list contains any
convincing response. We denote a response as convincing if it contains any other packets then
BTLE|BTLE DATA. If the response is convincing after listing nrsp

min times, the central sends the
list of received BLE packets to the mapper. Otherwise, it increases the number of listening
attempts nrsp

max. After nrsp
max it returns the received list of packets to the mapper.

4.2.5 BLE Peripheral

The peripheral represents our SUL. According to the message sequence diagram shown in
Figure 2.8, we assume that the peripheral sends advertisements and accepts connection requests.
After receiving a resetting BLE packet, e.g., a termination or scan request, we assume that the
peripheral returns to the advertising state.

Learning the behavioral model of the peripheral device is motivated by two reasons. First,
peripheral devices represent components that represent utilities for achieving a main task, e.g., a
wireless mouse. Peripherals are mostly components from third-party resources, where the insight
is limited. Hence, we identify black-box systems, in order to test and evaluate a whole ecosystem
consisting of many heterogenous components. Second, the learning setup is easier to control by
the central device, since the central initiates the connection and the pairing procedure.

4.3 Evaluation

The following section describes the performed evaluation on learning six different BLE devices.
First, we provide details about the concrete learning setup. Then, we provide the results for
learning the connection procedure, followed by the results for the pairing procedure. The imple-
mented framework, the learned models, and the learning results are available online [144]. We
conclude this section by presenting a case study on learning the behavioral model of the BLE
device built into a Tesla Model 3 and its key fob.

4.3.1 Learning Setup

For learning, the learning library AALpy [129], version 1.0.1, was used. The Python library
implements state-of-the-art learning algorithms including the L∗ algorithm with the improve-
ment of Rivest and Schapire. To create a smooth integration of all components, we base the
whole implementation on Python 3. More concretely, we used Python 3.9.0 for the performed
evaluation.

The cache used in the learning interface is based on the cache implementation from AALpy,
but was adapted to react to non-deterministic behavior. For the generation and parsing of con-
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Table 4.1: The investigated BLE devices in the conducted case study.

Manufacturer (Board) SoC Application

Texas Instruments (LAUNCHXL-CC2640R2) CC2640R2 CC2640R2 LaunchPad
Texas Instruments (LAUNCHXL-CC2650) CC2650 Project Zero
Texas Instruments (LAUNCHXL-CC26X2R1) CC2652R1 Project Zero
Cypress (CY8CPROTO-063-BLE) CYBLE-416045-02 Find Me Target
Cypress (Raspberry Pi 4 Model B) CYW43455 bluetoothctl
Nordic (decaWave DWM1001-DEV) nRF52832 Nordic GATTS

crete BLE packets, we used the Python library Scapy [158] (version 2.4.4). To parse all packets
some modifications to the used version of Scapy were necessary. The applied modification
should be available starting from Scapy v2.4.5.

As the central device, we used the Nordic nRF52840 Dongle and the Nordic nRF52840 De-
velopment Kit. We flashed the central devices with the firmware provided by the SweynTooth
repository [67].

4.3.2 BLE devices

Table 4.1 and Figure 4.3 show the six investigated BLE devices. For the case study, devices from
different manufacturers, but also different devices from the same manufacturer were selected. We
also investigate the behavior of BLE devices built into well-known hardware, like the Raspberry
Pi 4. All the system on the chip (SoC) implement the Bluetooth 5 standard [87] and run an
example application that starts in the advertising state. If possible the preinstalled applications
from the manufacturers were used. Otherwise, we flashed an example application provided by
the manufacturer’s software development kits. In the remainder of this thesis, we refer to the
devices by their SoC name.

4.3.3 Connection-Procedure Evaluation

For learning the connection procedure, we learn the behavior on the upper part of the message
sequence diagram depicted in Figure 2.8 including the start of the pairing procedure. For
learning, we set the parameters nerror = ncache = nnondet = 20. For checking equivalence, we
use the equivalence oracle StatePrefixEqOracle of AALpy, which implements a model-based
testing technique that provides state coverage in combination with randomized input sequences.
We adapted the implementation of the equivalence oracle to deal with non-deterministic behavior
and connection errors. We set ntest = nlen = 10.

The central listens for nrsp
min = 10 and nrsp

max = 20 attempts in order to get a response from the
peripheral. For the nRF52832 this configuration had to be adapted since the device responded
slower than the other devices. Therefore, we increase the parameters to nrsp

min = 20 and nrsp
max =

30. To quickly check if the device is still reachable during the reset procedure, we set nrsp
min = 5

and nrsp
max = 50. The resetting action itself can be executed quickly, since there is no need to

check the output. Hence, we set for the termination ind the parameters nrsp
min = nrsp

max = 1.

All experiments were executed on an Apple MacBook Pro 2019 with an Intel Quad-Core i5
operating at 2.4 GHz and with 8 GB RAM, running macOS Catalina (version 10.15.7).

Table 4.2 shows the results for learning the connection procedure. First, the table only
presents the results for five out of six devices. One device, CC2640R2, was not learnable with
the presented setup since it always behaved non-deterministically, even with the conducted
countermeasures. We will later present how we still managed to come up with a learning setup
that enables deterministic learning for the CC2640R2. Furthermore, we also had to slightly adapt
the learning setup for the CC2652R1 and the CYW43455 due to reliability issues in establishing
a connection. Hence, the behavioral model is learned starting from an already established
connection. Therefore, the pre method is extended by a scan req and connection req.
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(a) LAUNCHXL-CC2640R2,
SoC: CC2640R2

(b) LAUNCHXL-CC2650,
SoC: CC2650

(c) LAUNCHXL-CC26X2R1,
SoC: CC2652R1

(d) CY8CPROTO-063-BLE,
SoC: CYBLE-416045-02

(e) Raspberry Pi 4 Model B,
SoC: CYW43455

(f) decaWave DWM1001-DEV,
SoC: nRF52832

Figure 4.3: The investigated BLE devices in the performed case study.
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Table 4.2: Learning results for the performed evaluation on learning the connection proce-
dure implemented by the different BLE devices. One device could not be learned due to non-
deterministic behavior.

CC2650 CC2652R1† CYBLE-
416045-02

CYW43455† nRF52832

# States 5 4 3 16 5

Total time in minutes (min) 23.61 5.57 12.00 65.12 126.24
Learning (min) 18.22 3.46 9.41 51.07 73.80
Conformance checking (min) 5.39 2.11 2.59 14.05 52.44

# Output queries 405 196 243 784 405
# Output query steps 1542 588 747 3136 1459

# Conformance tests 59 44 32 164 50
# Conformance test steps 626 467 344 1958 580

# Connection errors 526 - 292 - 459
# Non-deterministic outputs 5 1 0 3 1

The learned models have between three and 16 states. This already shows the behavioral
differences between the investigated devices. The learning runtime is between 5.6 minutes and
2.1 hours. Each model could be learned within one learning round, i.e., only one equivalence
query was required. Even for models with the same state space the runtime differs noticeably.
For example, both CC2650 and nRF52832 have five states, but learning the nRF52832 took
more than five times longer. This difference occurs due to extended waiting time for responses
required when learning the nRF52832. The results in Table 4.2 also underline the need for
countermeasures against connection errors and non-deterministic errors to learn a behavioral
model of a BLE device.

Even though CC2650 and nRF52832 have the same state space, they still show behavioral
differences. Figure 4.4 and Figure 4.5 show the simplified learned model of the CC2650 and
nRF52832 respectively. The red transitions highlight one difference between the two learned
models: the CC2650 and the nRF52832 react differently on unrequested length responses
(length rsp). The CC2650 remains in the same state, whereas the nRF52832 returns to the
initial state, which means the connection is terminated. According to BLE standard [87], both
behaviors are permitted. This also shows that the specification leaves some freedom in the actual
implementation of the BLE stack.

Moreover, a manual analysis of the learned models shows a violation of the BLE specification.
Figure 4.6 depicts a simplified version of the learned model from the CC2652R1. The red edges
of the model show that a version request is always answered by a version response. This is a
violation of the following statement in the BLE specification [87]:

“If the Link Layer receives an LL VERSION IND PDU and has already sent an
LL VERSION IND PDU then the Link Layer shall not send another LL VERSION IND

PDU to the peer device.”

Note that the initial state in the depicted model of the CC2652R1, Figure 4.6, considers
that the central and the peripheral are already connected. We made this assumption for the
CC2652R1 and for the CYW43455. For the CYW43455, establishing a large number of connec-
tions was not reliable. The CYW43455 non-deterministically rejects connection requests. For
the CC2652R1, a deterministic pattern was observed where no connection was established. The
device stops sending advertisements after receiving two connection requests, even though the
connections are terminated. For example, the following input sequence would trigger a stop of
sending advertisements:

scan req · connection req · connection req

44



q0 q1 q4

q2

q3

connect req/DATA

scan/ADV

pairing req/
PAIRING RSP

connect req/DATA
pairing req/FAILED

version req/VERSION IND

pairing req/
PAIRING RSPversion req/

VERSION IND

connect req/
DATA

connect req/DATA

scan/ADV

scan/ADV

scan/ADV
+/EMPTY

scan/ADV

+/+

length rsp/UNKNOWN

length rsp/UNKNOWN
+/+

+/+

length rsp/UNKNOWN

+/+
length rsp/UNKNOWN

Figure 4.4: Learned model of the CC2650. The red transitions highlight the behavioral difference
to the nRF52832 (Figure 4.5) for a non-requested length rsp. For simplification, some inputs
and outputs are abbreviated with a ‘+’ symbol.

q0 q1 q4

q2

q3

connect req/SM RSP

scan/ADV
length rsp/DATA

version req/
VERSION IND

mtu req/
MTU RSP

version req/VERSION IND

mtu req/
MTU RSP

connect req/
SM RSP

connect req/
SM RSP

connect req/SM RSP

scan/ADV
length rsp/DATA

scan/ADV
length rsp/DATA

scan/ADV
length rsp/DATA

scan/ADV
+/EMPTY

+/+

mtu req/MTU ERR
+/+

+/+

version req/DATA

+/+
version req/DATA
mtu req/MTU ERR

Figure 4.5: Learned model of the nRF52832. The red transitions highlight the behavioral
difference to the CC2650 (Figure 4.4) for a non-requested length rsp. For simplification, some
inputs and outputs are abbreviated with a ‘+’ symbol.
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q0

q1 q2

q3

pairing req/
PAIRING RSP

pairing req/
FAILED

feature rsp/
LENGTH REQ

length rsp/
DATA pairing req/

FAILED

pairing req/
PAIRING RSP

feature rsp/LENGTH REQ

length rsp/
DATA

+/+
version req/
VERSION IND

version req/
VERSION IND

+/+

version req/
VERSION IND
+/+

version req/
VERSION IND
+/+

Figure 4.6: Learned model of the CC2652R1. For simplification, some inputs and outputs on the
transitions of the learned model are abbreviated with a ‘+’ symbol. The red transitions show
a violation of the BLE specification [87], since the device always responds to version req,
where the BLE specification states that an answer should be only received once.

Table 4.3: Learning results for learning the CC2640R2 which behaved non-deterministically.
The device could be learned by reducing the input alphabet by one input. We show the results
on three setups where each excludes one input.

no pairing req no length req no feature req

# States 6 11 11

Total time (min) 26.40 47.57 40.29
Learning time (min) 16.94 30.73 28.29
Conformance checking time (min) 9.46 16.84 11.70

# Output queries 384 705 704
# Output query steps 1474 3143 3143

# Conformance tests 61 115 111
# Conformance test steps 712 1406 1371

# Connection errors 449 822 821
# Non-deterministic outputs 1 10 2

Only by performing a hard reset, does the device start sending advertisements again. Hence,
we remove the connection req and scan req from the input alphabet and establish a connection
before querying the SUL.

We also encountered problems in learning the CC2640R2, since this device always behaved
non-deterministically. The following input sequence always leads to non-deterministic observa-
tions:

connection req · pairing req · length rsp · length req · feature req

Earlier in the learning process the received query output corresponds always to the following
output sequence:

LL LENGTH REQ ·SM PAIRING RSP ·BTLE DATA ·LL LENGTH RSP ·LL FEATURE RSP

Later in learning the received query output sequence changes to the following output sequence:

LL LENGTH REQ · SM PAIRING RSP · BTLE DATA · LL LENGTH RSP · BTLE DATA

Still, we managed to learn the behavioral models of this device. For this, we define different
experiment setups. In each experiment setup, we removed one of the nine inputs of the input
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Table 4.4: Learning results for the performed evaluation on learning the pairing procedure
implemented by the different BLE devices. Only a subset of the devices were learned, since not
all devices have pairing mode activated.

CC2640R2 CC2650 CYW43455

# States 11 10 6

Total time (min) 133.01 312.37 52.72
Learning time (min) 116.95 201.34 38.83
Conformance checking time (min) 16.06 111.03 13.89

# Output queries 487 453 223
# Output query steps 3142 2869 1012

# Conformance tests 110 100 60
# Conformance test steps 273 601 287

# Non-deterministic outputs 133 80 29
# Cache updates 1 3 0
# Hard resets 6 11 0

alphabet. We defined three different setups for the CC2640R2. With this approach, three
variations of behavioral models representing the CC2640R2 could be learned. Table 4.3 shows the
results for learning the CC2640R2. One experimental setup does not consider the pairing req,
one without the length req, and the third one without the feature req. The learned models
have between six and eleven states, where the required time for learning scales with the state
space. We see that considering the pairing req for learning leads to almost twice as many
states as without considering it. The results also show that the number of connection errors
is higher compared to the results presented in Table 4.2. For the experiment that does not
consider the length req, we still observe a lot of non-deterministic behavior compared to the
other experiments.

4.3.4 Pairing-Procedure Evaluation

For learning the pairing procedure, we consider all BLE packets that are required to establish an
encrypted communication using the legacy pairing method. According to Figure 2.8, we include
all the BLE packets starting from the execution of a pairing request.

For our case study on the pairing procedure, we selected three devices from our previously
performed case study: CC2640R2, CC2650, and CYW43455. These devices accept a legacy
pairing request and allow an efficient exchange of messages. For creating all the information
required to establish an encrypted communication, we adapted the security manager interface
provided by the SweynTooth [67] repository. Since this C/C++ interface uses the Linux BLE
stack implementation BlueZ [152], executing the learning experiments on a Linux-based system
was more convenient for this case study. Hence, we executed all experiments for learning the
BLE pairing procedure on an Ubuntu 20.04.2 LTS running on an HP EliteBook 840 G2 with an
Intel i5-2000 operating at 2.2 GHz with 16 GB RAM. Note that also the experiments presented
in Section 4.3.3 could have been run on an Linux-based system, but we decided to use a more
state-of-the-art hardware setup instead.

The parameter configuration was changed for learning the pairing procedure, since the learn-
ing interface implements a different error-recovery strategy. This strategy involves that the de-
vice can be hard reset in the case of encountering too many connection errors or errors due
to non-deterministic faults. The interface allows only a small number of connection errors and
errors due to non-deterministic behavior. For this, we set nerror = 5, ncache = 3, and nnondet = 3.
In case the maximum number of errors is reached, the user is asked to hard reset the device or
to abort the learning procedure.

Table 4.4 presents the results on learning the pairing procedure of three different devices.
Again, all three learned models were different, ranging from a state space between six and eleven

47



states. Learning took between 52.7 minutes and 5.2 hours. We again see a large difference in
the runtime between models with the same state space, CC2640R2 vs. CC2650. The table also
provides information about the number of performed updates in the cache, which indicates the
number of replacements of observed and cached outputs. Second, the table also lists the number
of performed hard resets. Connection errors are not reported since the connection request is not
considered here.

Hard resets were required for learning the CC2640R2 and the CC2650. The CYW43455
could be learned without any user interaction. The causes for the required hard resets were
different. The CC2640R2 stops accepting pairing requests after an unknown number of received
BLE packets. In order to again accept pairing requests, the device needs to be hard reset when
the maximum number of non-deterministic errors is reached.

We observe a different reason for hard resetting the CC2650 during learning: After executing
the learning experiment multiple times, we observe that the device stops responding when it
receives a certain input sequence. The device crashes on the following input sequence, where
inputs surrounded by 〈. . .〉 indicate encrypted messages:

connection req · pairing req · confirm · random·
encryption req · 〈pause encryption req〉 · terminate ind.

The central performs a valid key exchange procedure in order to establish an encrypted com-
munication. To confirm that the encrypted communication channel is successfully established,
the peripheral expects to receive an encrypted start encryption rsp. However, the peripheral
instead sends an encrypted request to terminate the encryption, 〈pause encryption req〉. Also
after performing a termination indication, the CC2650 does not return to advertising and re-
quires to be hard reset. This shows again that an unexpected sequence of valid BLE packets
can make the devices unreachable.

Figure 4.7 shows the learned behavioral model of the pairing procedure implemented by the
CYW43455. The learned model strictly follows the procedure depicted in the message sequence
shown in Figure 2.8. All other received messages are basically ignored. The transition colored
in red indicates the start of the encrypted communication.

Figure 4.8 shows the learned model of the CC2640R2. We see a clear difference between
the learned model of the CYW43455 depicted in Figure 4.7. The red transition between state
q3 and q4 indicates again the start of encrypted communication. First, we see that a pairing
request resets the existing pairing procedure until the encryption is enabled. Furthermore, we
see a loop between the states q2 and q3, which shows that the confirm value replaces confirm
values that have already been sent, which in turn must be followed by the corresponding random
share. The models are also different after encryption is enabled. We see in the states q9 and q10

that a new pairing request can be sent, and every second pairing request is accepted. If in any
case a second enc req is received, the device stops responding to any further requests as shown
in state q7.

4.3.5 Fingerprinting

We want to use the learned models to detect which BLE device or which BLE stack implemen-
tation is used. Our results show that all learned models were different for each device. Hence,
the learned models can be used to fingerprint the considered devices. Instead of comparing
each model with the others, we derive one input sequence that shows unique behavior when
executed on each device. For this purpose, we consider the models generated during learning
the connection procedure, to make this approach applicable to all devices.

To create a fingerprinting sequence, we can use the outputs stored in the observation table,
which is generated during learning. By comparing the rows of the generated observations tables,
we can derive a sequence that fingerprints the devices. Table 4.5 presents all the outputs of the
different devices that can be observed after an initial connection has been established. The table
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q0

q1

q2

q3

q4

q5

pairing req/
PAIRING RSP

sm confirm/
SM CONFIRM

sm random/
SM RANDOM

enc req/
ENC RSP,
START REQ

start enc rsp/
ENC INFO,
MASTER ID,
SIGNING INFO

+/DATA
enc req/REJECT IND

+/DATA
enc req/REJECT IND

+/DATA
enc req/REJECT IND

+/DATA

+/EMPTY

+/EMPTY

Figure 4.7: Learned model of the CYW43455 pairing procedure. For simplification, some in-
puts and outputs are abbreviated with a ‘+’ symbol. The red transition indicates the start of
encrypted communication.
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Figure 4.8: Learned model of the CC2640R2 pairing procedure. For simplification, some labels
on the transitions of the learned model are abbreviated with a ‘+’ symbol. The red transition
indicates the start of encrypted communication.
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Table 4.5: Different outputs on each input symbol after a previous connection req has been
performed. The different outputs enable us to distinguish the different devices and create a
fingerprint sequence.

SoC feature rsp version req length req length rsp

CC2640R2 BTLE DATA BTLE DATA LL LENGTH RSP BTLE DATA
CC2650 BTLE DATA LL VERSION IND LL UNKNOWN RSP LL UNKNOWN RSP
CC2652R1 LL LENGTH REQ LL VERSION IND LL LENGTH RSP BTLE DATA
CYBLE-416045-02 LL REJECT IND LL VERSION IND LL UNKNOWN RSP LL UNKNOWN RSP
CYW43455 ATT MTU REQ LL VERSION IND LL LENGTH RSP LL REJECT IND
nRF52832 LL UNKNOWN RSP LL VERSION IND LL LENGTH RSP BTLE DATA

shows that already performing a feature rsp enables to distinguish four out of six devices. To
distinguish the remaining two devices, either a version req, length req, or length rsp can be
performed.

We can now concatenate these inputs into a sequence that yields a unique output sequence for
every device. We assume that scan req resets a connection and that connection req establishes
a connection. Hence, one possible fingerprinting sequence can be the following input sequence

scan req · connection req · feature rsp · scan req · connection req · version req.

Executing this input sequence on each of the investigated devices leads to a different output
sequence. For example, the observed output on the nRF52832 would be

ADV · SM HDR · LL UNKNOWN RSP · ADV · SM HDR · LL VERSION IND,

and on the CC2650 it would be

ADV · BTLE DATA · BTLE DATA · ADV · BTLE DATA · LL VERSION IND,

even though both learned models have the same number of states. We see that these two devices
are already distinguishable after performing a connection request. However, to distinguish from
the other devices, the whole output sequence would be necessary. Note that there also exists
other input sequences that enable fingerprinting the devices. The outputs presented in Table 4.5
already show several different possibilities.

Considering that the fingerprinting sequence is relatively short, we assume that generating
such a sequence by random sampling would also be sufficient for the set of investigated devices.
However, the models only need to be learned once and enable the generation of new fingerprinting
sequences without requiring additional interaction with the SUL. The manual analysis should
then be replaced by similarity checks based on model-based testing techniques as proposed by
Lee and Yannakakis [104] or Tappler et al. [170].

4.3.6 Case Study on Tesla Model 3

The previously presented case study considers mostly devices on specific development kits. To
show that our BLE learning approach is not only applicable for BLE development kits, we also
evaluate a more advanced black-box scenario.

For another practical evaluation, we consider a case study from the automotive industry.
Texas Instruments Incorporated [103] proposes several use case scenarios for the usage of BLE in
a vehicle. One application scenario is the keyless access to a car via BLE. One car manufacturer
that implements such keyless access via BLE is Tesla, Inc. for their Tesla Model 3 and the Tesla
Model Y. The car can be unlocked via an app on the mobile phone, but also by a key fob that
uses BLE.

If BLE is used for car access, it is essential that the protocol is correctly implemented and
used. Otherwise, a risk exists that the car might be unlocked by an unprivileged person. The
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Figure 4.9: Advanced learning setup for key fob. We use Lego R© to keep the key fob constantly
in motion. This prevents the key fob from stopping to send advertisements.

NCC group [78] showed in 2022 that this is a real threat. They present a relay attack that
enabled an attacker to access a Tesla Model 3 and Y.

In the remainder of this section, we describe how our BLE learning setup can be used to
learn the behavioral model of the BLE devices implemented in a Tesla Model 3 and in its key
fob.

Learning setup. To cope with the more difficult conditions under which the experiments
have to be carried out, we decided to slightly adapt the learning setup: For learning the model
of a BLE device built into a car, the biggest problem was time, since the car was only available
for a few hours. To deal with this problem, we decided to switch the learning algorithm to
KV [96]. Using KV has the advantage that the algorithm generates more intermediate hy-
potheses. Therefore, in case the connection is lost or any other environmental influences abort
the current learning procedure it is easier to restart the learning procedure from the last learned
hypothesis. We apply the KV implementation of AALpy version 1.3.0, which considers all
improvements as discussed in Chapter 3.

We also used this setup for learning the Tesla Model 3/Y key fob. The reason, however,
for using this adapted framework was different: One big problem in the communication with
the BLE key fob was that the key fob responds very slowly to performed requests. Hence, we
had to increase the parameters nrspmin and nrspmax to the values 60 and 80 respectively. At the
same time, waiting too long may cause the current connection to be terminated. An additional
problem was that the key fob must be moved to avoid entering a standby state in which the
key fob stops sending advertisements. Moving the key fob manually during learning is tedious.
Hence, we extended our learning setup by Lego R© components that continuously move the key
fob. Figure 4.9 shows the learning setup with Lego R©.

By observing the BLE traffic around a Tesla Model 3, we can determine the hardware address
of the BLE device since the Tesla Model 3 continuously sends advertisements. This can be simply
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Table 4.6: Learning results for learning the BLE devices of the Tesla Model 3 and Tesla Model
3/Y key fob.

Tesla Model 3
Tesla Model 3

Key Fob

# States 11 11

# Learning round 8 7
# Learning restarts 1 2
Total time (min) 86.94 -
# Output queries 323 307
# Conformance tests 155 87

done by using a mobile phone and a corresponding application such as the nRF Connect for
Mobile application provided by Nordic Semiconductor ASA [21]. Note that this does not require
access into the car itself. The same can be done with the Tesla Model 3/Y key fob, since it also
sends BLE advertisements.

Learning results. Table 4.6 shows the results of learning the Tesla BLE devices. Both models
have eleven states and are behavioral equivalent to each other. Figure 4.10 illustrates the simpli-
fied learned models. Learning the model of the Tesla Model 3 took approximately 86.94 minutes,
where we had to restart the learning procedure once after the first iteration generated a model
with 10 states. For learning the model of the key fob, we had to restart the learning procedure
twice. We do not provide any time measurements since the restart was required due to an
unreliable connection to the device.

To make the approach better comparable to the previously presented learning results of the
other BLE devices, we also learned a model of the Tesla Model 3 using the previous learning
setup based on L∗ and a reduced input alphabet. The reduced input alphabet contains the
following five inputs

I ′AC = {scan req, connection req, feature rsp, version req, legacy pairing req}.

Using this reduced input alphabet, we managed to learn a model with only six states. Learning
took 33.1 minutes and required a total of 237 output queries and 1462 input steps. We observed
282 connection errors and eight times non-deterministic behavior during learning. These results
show that learning a model of BLE devices that are built into automotive components is indeed
possible and feasible in a finite amount of time.

The Tesla BLE models show many similarities with the CC2640R2. For example, similar to
the CC2640R2 the BLE device in the Tesla remembers previously performed version requests
and answers them immediately after responding to the initial request of the peripheral device.
However, the device in the Tesla initially sends a feature request, whereas the CC2640R2 sends
a length request. Hence, executing the fingerprinting sequence that we presented in the previous
section would produce a unique output sequence for the Tesla BLE devices. A closer look at the
concrete transmitted packets of the Tesla Model 3 reveals that the advertising messages mimic an
Apple iBeacon. However, by investigating further transmitted packets, we observe that the BLE
device used in the Tesla Model 3 contains the official company identifier of Texas Instruments
Inc., which aligns with the found similarities to the CC2640R2 that is also manufactured by
Texas Instruments.

4.4 Conclusion

This chapter presented a case study on learning behavioral models of BLE devices via active
automata learning. For this purpose, we introduced a learning framework that allows us to
interact with a black-box BLE device by sending and receiving BLE packets. Our results show
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Figure 4.10: Learned model of the BLE device built into the Tesla Model 3. To provide a clear
illustration, we grouped inputs and outputs by the ‘+’ symbol. Moreover, we color resetting
transitions to the state q0 and q1 with gray colors, where transitions are dotted and dashed
respectively. Note that the model for the learned model of the key fob is equivalent except for
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that learning wireless protocol implementations on physical devices with our proposed learning
setup is indeed possible. However, we faced several challenges in doing so. BLE packets might
get lost or arrive delayed. To overcome these problems, we introduced countermeasures to ensure
reliable but still efficient learning. We showed that the learned models reveal violations of the
BLE specification. Furthermore, the models show behavioral differences between all investigated
devices. We showed that the learned models can be used to generate input sequences that enable
the fingerprinting of BLE devices. For real-world systems, the possibility to create a fingerprint
can be critical in the case that there exist known security vulnerabilities for certain devices. We
also presented a case study on learning models of the BLE devices built into a Tesla Model 3
and its key fob. In doing so, we experienced several challenges but managed to learn behavioral
models.

(RQ 1.1) Does active automata learning perform well for learning communi-
cation protocol implementations on physical devices?

In actively learning different BLE stack implementations on physical devices, we faced
several challenges: First, active learning required an interface that enabled active com-
munication with the SUL. Furthermore, efficient mechanisms were required to reset the
SUL. Another challenge in learning the behavior of physical devices, especially when
learning wireless communication protocol implementations, was that messages could be
lost or arrive delayed. Thus, error-recovery mechanisms were needed to deal with pos-
sible non-deterministic observations. Our results showed that creating such a learning
interface was indeed possible: We learned behavioral models of all eight investigated BLE
devices. However, some devices could only be learned with a reduced input alphabet. To
enable learning in a limited amount of time, we learned the BLE connection and pairing
procedure separately, which keeps the input alphabet small.

(RQ 1.2) Is automata learning useful to learn security-critical behavior?

We learned the BLE pairing procedure of the BLE devices. The pairing procedure de-
fines a security-critical key exchange procedure. The exchanged key is used to establish
encrypted communication. The learned models showed behavioral differences, especially
when receiving unexpected messages. Some devices terminated the ongoing pairing pro-
cedure and reset to a previous state, while other devices ignore unexpected messages.
We also observed that a device stopped responding to requests when the key exchange
procedure was unexpectedly terminated. Active automata thus provided useful insights
into differences between implementations and tested unexpected input sequences that
uncovered reliability issues.

(RQ 3.3) Can automata learning be used to fingerprint black-box devices?

We learned seven different models for eight different devices for the BLE connection
procedure. Only the two learned models for the BLE devices used in the Tesla components
were equal to each other. The discovered behavioral differences allowed us to fingerprint
the individual devices. Furthermore, we showed how the data structure that are generated
during learning can be used to generate fingerprinting sequences. The fingerprinting
sequence was an input sequence, where the execution of this input sequence led to different
output sequences on each of these devices.
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Chapter 5

Learning of IPsec-IKEv1
VPN Servers

Declaration of Resources

This chapter is based on the paper “Mining Digital Twins of a VPN Server” [150] pre-
sented at FMDT 2023 and on the Master’s Thesis of Benjamin Wunderling “Model Learn-
ing and Fuzzing of the IPsec-IKEv1 VPN Protocol” [196]. The Master’s Thesis of Ben-
jamin Wunderling was co-supervised by the author of this thesis. For more details on the
content presented in this chapter, we refer to the underlying Master’s Thesis of Benjamin
Wunderling.

5.1 Introduction

A Virtual Private Network (VPN) is a method that enables secure communication over an
insecure channel. In addition, VPN can be used for remote access to internal network resources,
e.g., for the remote control of the heating system in a home automation system. Therefore, the
security of the used VPN is also critical for the security of an IoT network. To ensure security, it
is essential to verify that the VPN implementation used conforms to the standard and does not
introduce security issues. The challenge is that many VPN implementations are closed-source,
which requires black-box testing techniques.

Learning-based testing of communication protocols has numerous success stories as shown by
examples from the literature [50, 61, 62, 63, 168, 170] and by the case study on BLE presented
in the previous chapter. Automata learning has been applied to different VPN protocol imple-
mentations. For example, Daniel et al. [47] learning-based tested OpenVPN implementations,
and Guo et al. [80] learned and model checked IPsec-IKEv2 protocol implementations.

In the following, we complete the VPN learning case studies by learning IPsec-IKEv1 protocol
implementations. Albeit IKEv1 is the predecessor of IKEv2, IKEv1 is still supported and used
as it is shown by real-world setups [70]. Since IKEv2 was introduced as the successor of IKEv1
due to IKEv1’s complicated setup, we stress the necessity of automatic verification techniques
for IKEv1-based systems. This helps to test setups when only IKEv1 is supported.

In addition, the IKEv1 case study is used to evaluate the required amount of interaction with
the SUL to actively learn a behavioral model. In practice, the goal is to learn a behavioral model
with a minimum number of interactions. For our evaluation, we compare two active learning
algorithms in the case study on IKEv1: L∗ and KV. The algorithms are compared based on
their runtime, and the number of queries and inputs that need to be executed on the SUL to
learn a conforming behavioral model.

First, this chapter introduces the setup for learning IKEv1 in Section 5.2. Section 5.3 then
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Figure 5.1: The active automata learning setup for learning a model of an IPsec-IKEv1 imple-
mentation.

presents the results of learning two IKEv1 server implementations followed by a discussion of
one bug that was found during learning.

5.2 Learning Setup

The learning setup for learning behavioral models of IKEv1 protocol implementations consists of
five components. Figure 5.1 shows the five components that are similar to those used for learning
BLE devices, as described in Chapter 4. In contrast to the BLE learning setup, the components
for learning VPN are arranged slightly differently. Thus, the mapper and the learning interface
are interchanged. Again, the learning interface was used to handle irregularities in the learning
procedure. The components were swapped since unexpected behavior was easier to detect and
to handle with concrete packets than with abstracted inputs.

Learning algorithm. For learning IKEv1, we evaluated two different learning algorithms:
the L∗ algorithm [17] and the KV algorithm [96]. Both algorithms use all the improvements de-
scribed in Chapter 3. The exchange of the learning algorithm does not require any other changes
in the learning setup than the change of the algorithm in the learning algorithm component.
This shows the flexibility of the modular learning setup. Both learning algorithms implement
the equivalence oracle with a conformance-testing technique that provides state coverage in
combination with randomly selected inputs.

The learning algorithm learns a behavioral model using an abstracted input alphabet since
learning with all possible IKEv1 packet instantiations would not be feasible. The abstracted
input alphabet used for learning is set to IA = {main sa,main key ex,main authenticate,
quick sa, quick ack}. The learning algorithm then provides abstract output queries to the
mapper and receives the corresponding abstract query outputs from the mapper.

Mapper. The mapper component is used as described in Section 2.2.2. Thus, it translates
abstract inputs into concrete inputs and received concrete outputs into abstract outputs. Similar
to the BLE learning setup, we use the Python library Scapy [158] to parse and generate IKEv1
packets. Considering the messages shown in Figure 2.9, the following mapping from abstract
inputs to concrete inputs applies:

• main sa→ ISAKMP SA {proposals},

• main key ex→ KEY EX {pkeyi, noncei},

• main authenticate→ AUTH {hashi},

• quick sa→ IPSEC SA {proposals}, and

• quick ack→ ACK,

where the fields in italics are concretized by the mapper.
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The output abstraction follows the standard packet identifiers used in Scapy. However,
Scapy v.2.4.5 could not parse all received ISAKMP packets. Therefore, a manual extension
of Scapy was needed to parse and generate all required ISAKMP packets. If no response is
returned from the SUL, the mapper returns the output NONE, and all received error messages
are mapped to the abstract output ERROR NOTIFICATION.

Since the purpose of the IKEv1 protocol is to establish an encrypted communication chan-
nel, the mapper must store all values required to successfully perform a Diffie-Hellman key
exchange [52] and an encrypted communication. The mapper also stores a Boolean flag indi-
cating whether the current communication is encrypted, and shares this information with the
learning interface to decrypt and encrypt messages.

Learning interface. The learning interface identifies and handles non-deterministic behavior.
Initial learning experiments have shown that models cannot be reliably learned due to non-
deterministic errors. Moreover, repetitions of the learning procedure yield different models. To
overcome these issues, several countermeasures were taken. First, we simply increase the waiting
time to receive responses. Already increasing the waiting time from one second to two seconds
was sufficient to reduce the number of different models. However, we still occasionally learned
different models, even though the variation of different models was smaller. A manual analysis
of the learned models revealed that the learning of different models was caused by retransmitted
messages.

To learn the same model in each repetition of the experiment, we adapted our learning
interface to handle these retransmitted messages. In general, our goal is to learn models with
each input defined for each state. To this end, the learning algorithm queries each input for
each state, albeit this input might be unexpected at this stage of the communication protocol.
In the examined IKEv1 implementations, these unexpected inputs trigger the retransmission of
messages. We conjecture that the SUL assumes that messages have been lost since the initiator
is sending inputs from an earlier stage of the communication protocol. Therefore, the SUL
reacts by retransmitting previous messages. This is an acceptable behavior according to RFC
2048 specification [33]. The problem in learning was that these retransmitted messages occurred
randomly and did not follow a deterministic pattern.

Albeit this type of non-deterministic behavior could be interesting for fingerprinting different
IKEv1 implementations, we desire to have deterministic behavior for testing purposes. To avoid
non-deterministic behavior, our learning setup provides an option to filter out these resent
messages. When this option is enabled, the learning interface removes received retransmitted
messages and forwards only the remaining received messages to the mapper.

Detecting whether a message has been retransmitted is simple since each message has a
unique numeric identifier. The learning interface can determine whether the received message is
retransmitted by checking if this message identifier has already been received. For this purpose,
the learning interface stores all identifiers from all messages received so far. By filtering messages
in this way, we can learn the same model for almost all learning repetitions. There was only
one exception where we could still observe non-deterministic behavior. In this case, the non-
deterministic behavior occurred due to a bug in a Python library used for Diffie-Hellman key
exchange. In Section 5.3.5, we will discuss the revealed bug in more detail.

The learning interface is also responsible for resetting the SUL before performing a new
output query. We assume that the connection can be reset during the main mode via an ISAKMP
error notification message. After entering the quick mode, the ISAKMP delete message can be
used to reset the SUL to its initial state. Later in the case study on learning concrete IKEv1
implementations, we see that this reset method does not work for all examined implementations.
It seems that one of the IKEv1 servers ignores all received error notification messages. Since the
communication could not be reset by sending packets, it was necessary to reset the VPN server
via SSH commands. In practice, this could hamper the learning setup for black-box components
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as the privileges to execute commands via SSH may not be present on the SUL host. However,
for a local or custom setup, we assume that these access rights are present. Therefore, with this
reset method, the black-box assumption remains as we do not need access to the source code.

Client (initiator). The client is used to communicate with the SUL, where the client is the
initiator in the IKEv1 protocol. For this purpose, the client implements a network socket that
sends and receives packets via UDP. We assign the socket a specific IP address and port over
which it sends and receives messages. The client uses a preset identifier, the initiator cookie,
to avoid any unexpected behavior due to randomized identifiers. The client then sends byte
streams via the socket and the received packets are then forwarded to the learning interface,
which post-processes them.

SUL (responder). The SUL represents the responder in the IKEv1 protocol. Therefore, we
learn a model that formalizes the behavior of the responder, which corresponds to the role of
a VPN server. The server is configured to run at a certain IP address and to expect incoming
requests. Furthermore, the setup disables unique identifiers for established connections. Oth-
erwise, consecutive ISAKMP SA messages would always trigger a new instance of a connection.
In addition, the configuration considers the usage of pre-shared keys (PSKs) for authentication,
256-bit AES-CBC for encryption, SHA-1 for hashing, and 2048-bit new Modular Exponential
(MODP) Diffie-Hellman group for key exchange.

Note that the learning algorithm, mapper, learning interface, and client run on one virtual
machine (VM), while the SUL runs on a second VM. The VMs are configured to have isolated
communication, i.e., they can communicate with each other but no other external communication
is possible.

5.3 Evaluation

5.3.1 Case Study Subjects

For the case study on learning behavioral models of IKEv1 implementations, we considered
two different implementations: strongSwan [166] and libreswan [107]. The strongSwan
implementation is a fork of the FreeS/WAN implementation, whereas libreswan is a fork of
Openswan, which also originates from FreeS/WAN. Hence, FreeS/WAN, which is no longer
maintained, is a common ancestor of both strongSwan and libreswan. Both implementa-
tions are available for Linux, Android, FreeBSD, and OS X based operating systems. For this
case study, we evaluated strongSwan U5.9.5/K5.15.0-25-generic and libreswan 3.32/5.15.0-
41-generic. The detailed configuration of the servers is given in the Master’s thesis of Wunder-
ling [196].

5.3.2 Environmental Setup

For our learning setup, we require two virtual machines that can communicate with each other.
For this purpose, we used two VMs with Ubuntu 22.04 LTS running in VirtualBox 6.1. Both
VMs run on the same host computer: a Dell XPS 15 with an Intel R© Core

TM
i7-1195G7 CPU

running at 2.9 GHz and 32 GB of memory using Ubuntu 20.04.6 LTS. For reliable communication
without any external confounding factors, we only allowed communication between the two VMs
in an internal network, where each VM has a fixed IP address. To make the communication
fast, we used the para-virtualized network adapter. For learning a model of libreswan, it was
also necessary to enable an SSH connection between the VMs.

For learning, we used the learning library AALpy version 1.2.9, which implements the learn-
ing algorithms L∗ and KV. As improvements for learning, we enabled the Rivest and Schapire
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counterexample processing and caching. As an equivalence oracle, we used the StatePrefixEqOr-
acle which generated input sequences that access every state in the provided hypothesis model,
and then append a random sequence of inputs. The number of input sequences per state was
set to ten, and also the number of appended random inputs is set to ten.

5.3.3 Learning Results for strongSwan

In this section, we present the learning results for learning the strongSwan implementation.
For this purpose, we will first discuss the results of learning without filtering retransmitted
messages as discussed in Section 5.2. Then, we will show the model learned with retransmitted
messages filtered out. The evaluation on strongSwan is concluded by comparing the L∗ and
KV algorithms in terms of runtime and required interaction with the SUL.

Learned models with retransmissions. Repeating the learning experiments with L∗ shows
differences between the final learned models of strongSwan. We consider two automata to
be equivalent if they are isomorphic to each other. In approximately 80% of the learning ex-
periments performed, the algorithm generates one of two distinct models. We refer to these
two models as retransmission model I and retransmission model II. The remaining 20% of the
learned models represent other automata that are not isomorphic to either retransmission model
I or retransmission model II.

Figure 5.2 illustrates retransmission model I, where red transitions indicate that a retrans-
mitted message has been received, and orange edges indicate the probable cause for receiving
retransmitted messages. The model shows that retransmitted messages are only observable after
entering the quick mode in the IKEv1 protocol. The retransmitted messages seem to be triggered
by initiating the quick mode with quick sa, followed by an input that is usually required only
in the main mode, e.g., main authenticate, main sa, and main key ex. We see cyclic behavior
where retransmission can always be repeated either by performing further main-mode inputs or
by performing quick sa.

Figure 5.3 shows the second frequently generated model by applying the learning algorithm.
Compared to the model shown in Figure 5.2, a slightly different retransmission behavior can be
observed, where messages from the main mode do not trigger further retransmissions after they
have been observed twice.

In general, retransmissions are allowed by the IKEv1 specification [33]. However, since they
occur in a non-deterministic manner, the learned model becomes impractical for conformance
testing purposes. The behavior of retransmitted messages can be very specific to each imple-
mentation. Therefore, this behavior might reveal which IKEv1 implementation is being used.
In this case, we should learn such models for later fingerprinting scenarios, as we discussed in
Chapter 4 for BLE devices.

Learned models without retransmissions. Figure 5.4 depicts the learned model when
filtering out retransmitted messages as explained in Section 5.2. We refer to this model as the
base model. In this setup, each repetition of a learning experiment resulted in a model that is
isomorphic to the base model. In all three models, we see a clear separation between the main
mode and the quick mode. While the main mode is completed by sending a main authenticate
message in state q2 and the quick mode is started by sending a quick sa message in state q3.
Figure 5.4 presents a much clearer description of the quick mode in contrast to the figures 5.2
and 5.3.

Learning metrics. Table 5.1 shows the results for learning the models with KV and L∗.
As expected, KV requires more equivalence queries than L∗. Note that equivalence queries
are implemented via conformance testing. The results show that the number of states learned
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Figure 5.2: First commonly learned model including retransmitted messages (retransmission
model I ) of the strongSwan implementation. For simplification, some labels on the transitions
of the learned model are abbreviated with a ‘+’ symbol.
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Figure 5.3: Second commonly learned model including retransmitted messages (retransmission
model II ) of the strongSwan implementation. For simplification, some labels on the transitions
of the learned model are abbreviated with a ‘+’ symbol.
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Table 5.1: Learning results for the performed case study on learning IKEv1 protocol implemen-
tations of strongSwan.

Retransmission
model I

Retransmission
model II

Base model

L∗ KV L∗ KV L∗ KV

# Learning rounds 5 7 5 9 2 4

# States 10 10 12 12 6 6

Total time in minutes (min) 84.9 51.5 125.3 75.1 27.5 20.2
Output queries (min) 58.2 41.6 89.9 64.8 15.0 11.5
Conformance checking (min) 26.8 25.9 35.4 35.4 12.6 12.4

# Output queries 462 171 522 215 177 78
# Output query steps 2922 2047 4225 2219 856 676

# Conformance tests 100 100 120 120 60 60
# Conformance testing steps 1379 1826 1745 2219 747 934

directly influences the runtime and the number of output queries performed. Since we use a
state-coverage-based conformance testing technique, the number of performed conformance tests
is identical for both learning algorithms. Comparing the overall runtime, KV always performs
better than L∗. Learning the largest model in terms of the number of states, retransmission
model II, took 75.1 minutes with KV, while learning the base model took only 20.2 minutes.
These results show that learning an IKEv1 implementation is feasible in a reasonable time
budget.

Comparison of learning algorithms. In active automata learning, it is usually preferable
to reduce the number of required interactions with the SUL as much as possible, especially when
we are learning real-world applications. Therefore, we want a learning algorithm that requires
a small number of queries to learn correctly. As shown in the Bachelor’s thesis by Rindler [155],
the improved KV implementation in AALpy requires fewer queries than L∗ for learning DFAs.

This case study compared the learning algorithms, L∗ and KV, for learning Mealy machines
of real-world applications. Table 5.1 provides the results of the experiments for L∗ and KV. Due
to the selected conformance testing technique, the experiments are subject to randomness. To
allow a fair comparison, we repeated each learning experiment 20 times and report the average.
We can see that KV requires twice as many learning rounds, but overall KV is 1.36 faster than
L∗. We can also see that KV can aid in reducing the number of resets. Assuming that the
system is reset before executing each query, L∗ requires 237 resets, which is the sum of output
queries and conformance tests. KV, on the other hand, requires only 138 resets. There is no
difference in the number of executed inputs, 1 603 for L∗ vs 1 610 for KV. Most of the inputs for
KV are performed during the equivalence check. Choosing a different equivalence oracle could
further reduce this number.

q0
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q2 q3 q4 q5
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main key ex/
KEY EX

quick ack/NONE
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Figure 5.4: Learned base model of the strongSwan implementation. For simplification, some
labels on the transitions of the learned model are abbreviated with a ‘+’ symbol.
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Table 5.2: Learning results for the performed case study on learning IKEv1 protocol implemen-
tations of libreswan. For learning libreswan, the retransmission filtering was enabled. No
runtime measurements are provided due to the more complex reset.

Base model
L∗ KV

# Learning rounds 1 2

# States 4 4

# Output queries 100 36
# Output query steps 350 321

# Conformance tests 40 40
# Conformance testing steps 460 660

5.3.4 Learning Results for libreswan

As a second case study, we considered the IKEv1 implementation of libreswan [107]. We again
started by learning the model without filtering retransmitted messages. Unlike strongSwan,
libreswan already retransmits messages in the main mode. Therefore, the described behavior
of the resulting models varies much more. Due to the unreliability of learning with retransmitted
messages, we only provide the base model where the learning framework filters out retransmitted
messages. To filter out the retransmitted messages in the main mode, additional checking of
hashes and nonces was required, since the message identifiers in this mode are not sufficient.

The learned model of the libreswan implementation is shown in Figure 5.5. The shown
model of libreswan is learned considering the same setup as for learning the base model of
strongSwan. However, we see that the libreswan model has only four states. The behavior
is rather linear, following the message sequence diagram of IKEv1 presented in Figure 2.9.
The model also shows that unexpected messages are ignored by the implementation, while in
strongSwan some trigger a reset to the initial state of the current mode.

The laissez-faire behavior is also shown by the aspect that initiating the quick mode does
not change the behavior even when repetitively performing a quick sa or ack quick message.

Table 5.2 shows the learning results for learning the base model of libreswan with KV and
with L∗. Note that no runtime data is provided due to the more complex reset method. Similar
to the comparison of the learning algorithms for strongSwan, we see that KV requires 1.84
times fewer queries than L∗, but overall KV executed more queries. Again, the results show
that most of the inputs were executed during conformance testing, which could be reduced by
using a different conformance testing technique.
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Figure 5.5: Learned base model of the libreswan implementation. For simplification, some
labels on the transitions of the learned model are abbreviated with a ‘+’ symbol.
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5.3.5 Diffie-Hellman Library Bug

The case study conducted on the VPN protocol showed again that active automata learning is
a successful tool for detecting bugs in an implementation. While learning behavioral models of
IKEv1 implementation, we found a bug in a Python library called py-diffie-hellman1, which
we used to generate the values for the Diffie-Hellman key exchange.

1 def generate pr ivate key ( s e l f , key bits : int = 540) −> bytes :
2 pr ivate key = os . urandom ( key bits // 8 + 8)
3 s e l f . set pr ivate key ( private key )
4 return s e l f . get private key ( )
5
6 def set pr ivate key ( s e l f , key : bytes ) −> None :
7 s e l f . private key = int . from bytes ( key , byteorder=” big ” )
8 s e l f . public key = pow(2 , s e l f . private key , s e l f . prime )

Listing 5.1: Original code copied from the py-diffie-hellman

The indicator for the presence of a problem was that we occasionally failed to learn a be-
havioral model due to non-deterministic behavior. After debugging the inputs that caused
non-deterministic behavior, we received a different response when our generated private key
started with a zero byte. Further investigation revealed that the Python library we used in-
correctly converts a byte stream into an integer. Listing 5.1 shows an excerpt of the original
library’s code. First, a random byte stream is generated, which is then set as the private key in
Line 2. In Line 7, the byte stream is converted to an integer used to generate the public key in
the next line.

The problem is that the type conversion in Line 7 ignores null bytes at the beginning of
the byte stream. This not only leads to inconsistent key generation but also to security issues
as the private key becomes shorter, with shorter keys being easier to bruteforce. Learning was
able to expose this bug, as a large number of different inputs were generated during the learning
procedure. The amount of concretized inputs was sufficient to occasionally generate byte streams
with initial zeros.

5.4 Conclusion

We presented a learning setup for learning behavioral models of IKEv1 implementations. We
show that learning is feasible, but setting up the learning framework is not straightforward.
Several challenges were encountered in setting up a reliable learning framework. First, the
existing packet manipulation libraries had to be extended since not all packet types were sup-
ported. Second, we experienced non-deterministic behavior for different reasons. Some of this
non-deterministic behavior could be reduced by increasing the message waiting time. Another
measure was to manipulate the received output from the SUL. The main problem was that
unexpected input triggered the non-deterministic retransmission of messages. By filtering out
these retransmitted messages, we were able to reliably learn models of two IKEv1 implementa-
tions. Using the learning framework developed, we also revealed a security issue in a Python
library used to generate the values for the Diffie-Hellman key exchange.

By developing this learning framework for the IKEv1 protocol, we extend the series of learn-
ing frameworks [47, 80] for VPN protocols. In addition, we evaluated the impact of the learning
algorithm regarding the required interactions with the SUL. For this purpose, we compared
the two improved versions of L∗ and KV. The results of the comparison show that KV requires
fewer queries, which also reduces the number of resets required. Since resets can be tedious when
learning real-world applications, learning settings can benefit from using KV. However, due to
the larger number of required equivalence queries, KV may execute longer input sequences on

1https://github.com/TOPDapp/py-diffie-hellman

66

https://github.com/TOPDapp/py-diffie-hellman


the SUL. However, Aichernig et al. [15] have shown that the total number of inputs performed
by learning algorithms also depends on the conformance testing technique used. Therefore, it
might be useful to also consider other conformance testing techniques in future work.

(RQ 1) What are the challenges of learning behavioral models in networked
systems?

When learning behavioral models of IPsec-IKEv1 implementations, we again observed
non-deterministic behavior due to delayed messages. This problem could be easily fixed
by increasing the timeout for messages. Another challenge we observed when learning
IPsec-IKEv1 implementations was that the protocol behaved non-deterministically when
previous messages were resent. In active automata learning, we typically test every input
at each state. Thus, during the learning process, we might repeat inputs that resulted
in messages being non-deterministically retransmitted by the SUL. We overcame this
problem by filtering out these retransmitted messages.

(RQ 1.2) Is automata learning useful to learn security-critical behavior?

IPsec-IKEv1 is a security-critical protocol since it defines the key exchange procedure
for encrypting communications via a VPN. We succeeded in learning the behavioral
models of two IPsec-IKEv1 implementations. Our results were to some extent similar
to the case study on learning behavioral models of BLE devices that we presented in
Chapter 4. Again, we saw differences in the implementations where the responses to
unexpected messages were different. In addition, the extensive testing performed during
active automata learning revealed a security issue in the Python library used to implement
the Diffie-Hellman key exchange.

(RQ 3.3) Can automata learning be used to fingerprint black-box devices?

We again found that the learned models of the IPsec-IKEv1 implementations were differ-
ent, even though both investigated implementations originated from the same implemen-
tation. Hence, the learned models could again be used to fingerprint the implementations.
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Chapter 6

Active vs. Passive
Automata Learning

Declaration of Resources

This chapter is based on the paper “Active vs. Passive: A Comparison of Automata
Learning Paradigms for Network Protocols” [13] presented at FMAS 2022.

6.1 Introduction

This chapter compares the two paradigms of automata learning: active and passive. Chapter 4
and Chapter 5 show that active learning for real systems requires an elaborate setup in order to
enable a reliable and fault-tolerant active interaction. For example, queries have to be repeated
or received messages must be post-processed. The implementation of these countermeasures
often requires domain knowledge. The disadvantage of active learning is that all these counter-
measures must be performed during learning. During learning, it might be unclear whether we
observed new behavior or whether environmental conditions led to incorrect observations.

In passive learning, we learn behavioral models from a given sample. Even though we
experience the same challenges in the collection of this sample, they do not require an immediate
reaction at runtime. For passive learning, we can pre-process the sample in order to remove traces
or investigate suspicious behavior. The advantage is that this pre-processing can be done offline,
without access to the SUL.

In the following, we assess active and passive learning techniques considering different as-
pects. We will base our evaluation on the following research challenges (RCs):

• (RC 1) Can passive learning based on a random sample compete with active learning?

• (RC 2) Does the considered active automata learning algorithm generate an optimal
sample?

• (RC 3) Can random sampling support active automata learning?

(RC 1). As a first aspect, we assess if random samples of a specific size are sufficient to
cover behavioral aspects of the SUL, where the specific size is set in relation to the number of
queries active learning requires. When learning real systems, it might be easier to first generate
a random sample and then use this sample to learn a behavioral model. Hence, we investigate
whether a random sample similar in size to the number of queries required by active learning is
sufficient, and if not, how large such a sample must be in order to learn the same model as in
active learning.
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(RC 2). As a second aspect, we assess the efficiency of active automata learning. This re-
search question is motivated by the challenges experienced in the presented case studies using
active learning. To create a fault-tolerant active learning setup, we needed to implement coun-
termeasures that often required the repetition of queries. Thus, we aim to reduce the number
of interactions to a minimum. For this purpose, we evaluate the L∗ algorithm [17] with im-
provements of Rivest and Schapire [156]. In most of the case studies throughout this thesis, we
used this learning algorithm. In this chapter, we assess the potential improvements in terms of
performed queries.

(RC 3). As a last aspect, we asses if random samples could reduce the number of interactions
in active learning. In Chapter 3, we discussed that active learning algorithms can be extended
by caching data structures that aim to reduce the number of queries performed on the SUL. In
RC 3, we evaluate if we can reduce the number of interactions with the SUL when we initialize
the cache with a random sample.

Our previous chapters show that automata learning can successfully be applied to learn com-
munication protocol implementations. Our following evaluation focuses specifically on assessing
passive and active learning algorithms in terms of their suitability for learning communication
protocols. Thus, our provided answers to our presented research questions only consider this
context.

6.2 Methodology

The following section introduces the evaluated learning algorithms and their setup. Since we
investigate reactive systems for this evaluation, we learn Mealy machines in all scenarios. In
addition, we explain our applied method to compare the learned Mealy machines.

6.2.1 Learning Setup

Our comparison considers active and passive learning algorithms. We base our evaluation on the
algorithm implementations provided by the learning library AALpy [129] written in Python.
The learning library implements state-of-the-art learning algorithms and conformance testing
techniques. Initially, AALpy mainly provided active learning algorithms. For this comparison,
AALpy was extended by an implementation of a passive learning algorithm for deterministic
systems. Passive learning algorithms for deterministic systems are available as of AALpy version
1.2.8. Next, we present the used setup of our evaluated learning algorithms.

Active learning. For active learning, we evaluated the L∗ algorithm variant for Mealy ma-
chines as presented by Shahbaz and Groz [162]. The algorithm includes the improved counterex-
amples processing presented by Rivest and Schapire [156] as described in Section 3.1. Addition-
ally, we consider the caching procedure introduced in Section 3.2 to be enabled.

The equivalence oracle is approximated using conformance testing techniques. For confor-
mance testing, we apply a model-based testing technique that provides state coverage in com-
bination with random exploration. The test suite for conformance testing comprises sequences
that visit every state nwalk times. Each access sequence to a state is then extended by nstep

random inputs. In all our experiments, we set nwalk = 25 and nstep = 30.

We selected this setup for the comparison since it was applied in most of the presented
case studies in this thesis based on the recommendation of Tappler et al. [15] and the available
learning algorithms in AALpy.
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Passive learning. We base our passive evaluation on the learning algorithm RPNI which we
introduced in Section 2.2.1. Passive learning algorithms create a behavioral model from a given
sample. This provided sample might be incomplete in the sense that it misses behavioral aspects
of the SUL. To deal with this problem, the RPNI implementation in AALpy provides two
strategies. We assume that our learned Mealy machines are input complete. In case the sample
misses an input for a specific state, AALpy either uses self-looping transitions or transitions to a
sink state to model the missing behavior. Self-loop transitions are transitions, where the source
and the target state are equal. For modeling transitions to a sink state, we add an additional
artificial state, which then represents the target state for transitions of undefined inputs in a
specific state. The output for these transitions is a default output, indicating that this is an
artificial transition added to make the Mealy machine input complete. For our setup, we use
the sink state option, since the additional sink state immediately indicates that the data was
incomplete.

6.2.2 Sample Generation

Active learning sample. The sample from active learning serves as a basis for comparison.
Let SL∗ be the set of traces that includes all the output queries and their corresponding query
outputs that are performed during active learning with the previously described L∗ setup for
learning Mealy machines. The set also includes all the queries that are performed during the
equivalence check. We assume that SL∗ is sufficient for L∗ to learn the minimal ground truth
Mealy machine M of the SUL.

Optimized sample. We also want to evaluate the size of the optimal data set as it would be
sufficient for active learning algorithms such as L∗ to learn the ground truth automaton. Due
to the incremental nature of L∗, the algorithm queries redundant information. Hence, the set
of performed queries SL∗ commonly includes several queries that are prefixes of other queries.
Considering Definition 2, which defines the observation table as it is used in the L∗ algorithm,
we already see that the prefix-closed definition of the set Γ introduces redundancy. Furthermore,
the improved version of L∗ also initializes the E set with the whole input alphabet. However,
not all inputs are required for all systems to distinguish states.

Example 10 (Redundant Information in E) Table 2.1 shows the observation table that L∗

generates when learning the Mealy machine presented in Figure 2.1. The E set contains the
whole input alphabet, but to distinguish the three states the subset {connect, publish} would be
sufficient. By minimizing the E set to this set, many queries that are necessary to fill the other
two columns could be avoided.

For our case study, we compare the size of SL∗ with an optimal set SM. To generate SM,
we use the ground truth Mealy machine M that represents the SUL with a minimal number of
states. Using the W-Method [39, 186], we calculate the characterization set. We then manually
initialize the E set with the characterization set and execute the L∗ algorithm as described. We
then post-process the sample generated by L∗, where we remove all queries that are prefixes of
other queries. We denote this post-processed optimal sample as SM.

Random sample. We evaluate passive learning based on randomly generated samples. Al-
gorithm 3 describes the generation of a random sample SR. The random sample consists of
a list of input/output traces. The algorithm takes as input the size of the sample ndata, the
minimum length nmin of a trace, and the maximum length of a trace nmax. Additionally, we
require black-box access to the SUL such that inputs can be executed and outputs observed.
We represent the SUL by a Mealy machine M = 〈Q, q0, I, O, δ, λ〉. The algorithm returns a list
of random traces SR.
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Algorithm 3 Generation of a set of random input/output traces.

Input: data set size ndata, minimum length nmin, maximum length nmax, SUL M =
〈Q, q0, I, O, δ, λ〉

Output: random sample SR ⊂ (I ×O)∗

1: SR ←− [ ]
2: for i← 1 to ndata do
3: nlen ← random integer(nmin, nmax)
4: sI ←− [ ]
5: for j ← 1 to nlen do
6: sI ←− sI · random(I)
7: end for
8: sO ←− λ∗(q0, s

I)
9: SR ←− append(SR, trace(sI , sO))

10: end for

Algorithm 3 iteratively adds random sequences to the SR until the size of SR is equal to
ndata, where SR is initialized to the empty list. For each trace, we pick a random length nlen

within [nmin, nmax] in Line 3. We then create a random input sequence of length nlen. In Line 6
we randomly select an input from the input alphabet and append it to the currently generated
input sequence sI . Afterwards, we execute sI on the SUL to receive the corresponding output
sequence sO in Line 8. Let trace : I∗ × O∗ → (I × O)∗ be a function that generates a trace
of alternating inputs and outputs from a given input and output sequence of the same length.
Line 9 then appends the randomly generated trace to SR.

For our evaluation, we consider the following four different random samples:

(Sample 1) size |SL∗ |. This sample aims to represent a set with similar properties in terms
of size and length as the sample SL∗ . The size of the random sample SR is equal to the size of
SL∗ , i.e., |SR| = |SL∗ |. For defining the length of the traces, we set the parameters nmin and
nmax based on the trace lengths in SL∗ . The shortest query in SL∗ considers only one input.
Thus, we set nmin = 1. Let nL∗ be the average trace length of SL∗ . We set nmax = b2 ·nL∗ − 1e,
where bxe is the closest natural number to the real number x ∈ R, where a distance of 0.5 is
associated with the higher natural number.

(Sample 2) size 2 · |SL∗ |. This sample is equal to Sample 1 except the number of traces is
doubled, i.e., |SR| = 2 · |SL∗ |.

(Sample 3) length [|Q|, 2 · |Q|]. This sample includes traces whose length is aligned to the
size of the ground truth Mealy machine M. We set nmin = |Q| and nmax = 2 · |Q|, where Q is
the set of states. The size of the sample is again |SL∗ |.

(Sample 4) sufficient traces. The size and length of this sample are set so that the randomly
generated sample is sufficient to learn a Mealy machine that is behavioral equivalent to the
ground truth. To create such a sample, we iteratively increase the size of the sample and the
length of the trace. To do so, we created several samples, increasing either the size or the length,
or both.

6.2.3 Result Evaluation

We define an equivalence metric to measure the behavioral equivalence between a learned au-
tomaton and the ground truth automaton. Similar to active learning, we use conformance
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Table 6.1: Properties of the Mealy machines modeling BLE devices and MQTT implementations.
Full models are available online [127].

BLE MQTT

SUL |Q| |I| SUL |Q| |I|
CC2640 [no feature req] 11 8 ActiveMQ 18 9

CC2640 [no pairing req] 6 8 emqtt 18 9

CC2650 5 9 HBMQTT 17 9

CC2652R1 4 7 Eclipse Mosquitto 18 9

CYBLE-416045-02 3 9 VerneMQ 17 9

CYW43455 16 7

nRF52832 5 9

testing techniques to check for behavioral equivalence. We define a conformance relation that
is similar to Equation 2.1. Let M = 〈Q, q0, I, O, δ, λ〉 be the learned Mealy machine and
MSUL = 〈QSUL, q0SUL , I, O, δSUL, λSUL〉 the ground truth Mealy machine. We then define a test
suite T that consists of a set of test cases, where each test case is based on a trace t ∈ L(MSUL).
We say that M conforms to MSUL, if the following equation holds:

M impMSUL ⇔ ∀ t ∈ T : M passes t. (6.1)

We say that M passes t if λ∗(tI) = t holds, where tI is the input sequence of the trace t. For
our evaluation, we considered two different methods to generate a test suite. In both methods,
we approach a test suite size of approximately 10 000 traces.

Our first test suite is a randomly generated sample. For the generation of a random sample,
we follow Algorithm 3. We set the sample size to ndata = 10 000. We set the length of the
randomly generated traces based on the number of states of the considered SULs. We introduce
our SULs in Section 6.2.4. We set the minimum length nmin = 3, which is equal to the fewest
number of states. The maximum length is set to nmax = 32, which is twice the largest number
of states.

For generating the second test suite, we consider the underlying ground truth model M of
the corresponding SUL to generate a coverage-based test suite. The generation of the coverage-
based test suite is similar to the approach that we use in active learning for the substitution
of the equivalence oracle. We described the coverage-based generation technique in the active
learning setup in Section 6.2.1. For the evaluation of the results, we set the number of walks to
every state nwalk = d10 000

|Q| e and the length of the random suffix of trace nlen = 10, where Q is
the set of states of the minimal Mealy machine representing the corresponding SUL.

6.2.4 Case Study Subjects

We compare active and passive learning techniques based on their performance in learning
communication protocols. The investigated protocols are BLE and MQTT. The purpose of this
evaluation is to compare the different learning paradigms. Hence, we decided to consider the
already learned automata as SUL instead of the real implementation, which makes it possible
to generate large samples in a feasible amount of time.

Table 6.1 provides an overview of the considered case study subjects. For all SULs, we state
the size of the input alphabet |I| and the number of states |Q| of the minimal Mealy machine.
For BLE, we considered the six BLE devices of our case study presented in Chapter 4. Since
we learned three different models for the CC2640, we considered only two variants that cover
the difference in the state space between the variants adequately. For MQTT, we consider
learned models of MQTT broker implementations that are available in the benchmark set in the
Automata Wiki [131]. The MQTT broker models originate from a case study on learning-based
testing MQTT brokers performed by Tappler et al. [170]. We selected a subset of the provided
MQTT broker models. The selected Mealy machines model a two-client setup with the will
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message as an additional input. A client sends a will message to the broker and the broker then
distributes the will message when the client disconnects. This advanced setup increases the state
space of the MQTT models noticeably. All models of this case study are available online [127].

6.3 Evaluation

In the following, Section 6.3.1 describes the experimental setup in which we performed all ex-
periments. Afterwards, we provide the results of our evaluation in Section 6.3.2. Section 6.3.3
concludes with a discussion on the proposed research challenges of this chapter.

6.3.1 Experimental Setup

We performed all experiments except for the results presented in Figure 6.1 on an Apple Mac-
Book Pro 2019 with an Intel Quad-Core i5 running at 2.4 GHz and with 8 GB memory. The
experiments shown in Figure 6.1 were run on a Dell Latitude 5410 with Intel Core i7-10610U
running at 2.3 GHz and with 16 GB memory. The source code and the automata considered for
this case study are available online [127].

6.3.2 Results

In the following, we provide the results of our evaluation. All experiments were repeated five
times. Unless otherwise stated, the following tables contain the average results. The standard
deviation is indicated in curly brackets (‘{. . .}’).

Table 6.2 and Table 6.4 present the results of actively learning the BLE and MQTT automata.
The tables provide the number of performed output queries and conformance tests, with the
corresponding number of input steps performed. Furthermore, we show the number of learning
rounds, which is equal to the number of equivalence queries performed during learning. The
sum of queries corresponds to the size of the sample SL∗ and nlen shows the average length.
Additionally, the table provides the size of the optimized sample that would be generated by L∗

under the condition that the characterization set and state prefixes are known. We also state
the average length of the traces in the optimized sample.

Table 6.3 and Table 6.5 present the passive learning results for BLE and MQTT respectively.
The tables include the results for the previously described random samples: Sample 1, Sample
2 and Sample 3. For each sample, we provide the sample size ndata and the average trace length
nlen. We then provide the conformance metrics based on the random sample and on the sample
that provides state coverage. The provided conformance metrics state the percentage of passed
test cases on the corresponding test suites. As a last metric, we state the absolute number of
correctly learned models within the five repetitions. Thus, if the number of correct models is
equal to 5, this would mean that in all repetitions a model is learned that is 100% conforming
to the ground truth.

For the evaluation of Sample 4, Figure 6.1 provides an overview of the influence of the
sample parameters to create a sufficient sample. The heatmaps show on the x-axis the sample
size, where we constantly increase the factor that is multiplied with |SL∗ |. The y-axis provides
the average trace length. The values in the heatmap are color coded. The darker the green,
the higher the conformance, corresponding to the provided numerical value. We present these
values for one BLE SUL, the CC2640 (no feature req), and for one MQTT SUL, the Eclipse
Mosquitto broker.
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Table 6.2: Active learning results of the BLE case study. We repeated each experiment five times. Since all devices could be learned within one
learning round, there is no deviation between the repetitions. All BLE automata could be learned correctly.

CC2640
no feature req

CC2640
no pairing req

CC2650 CC2652R1
CYBLE-
416045-02

CYW43455 nRF52832

#Output queries 704 384 405 196 243 784 405

#Output queries steps 3136 1472 1458 588 729 3136 1458

#Conformance tests 275 150 125 100 75 400 125

#Conformance tests steps 8925 4775 3950 3100 2325 12800 3950

#Learning rounds 1 1 1 1 1 1 1

Sum queries 979 534 530 296 318 1184 530

Sum steps 12061 6247 5408 3688 3054 15936 5408

nlen 12.32 11.70 10.20 12.46 9.60 13.46 10.20

#Optimized queries 312 129 123 50 50 388 123

Optimized nlen 4.55 3.9 3.65 3.08 3.04 4.13 3.65
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Table 6.3: Passive learning results of the BLE case study. We repeated each experiment five times. The standard deviation is given in curly brackets
‘{. . .}’.

CC2640
no feature req

CC2640
no pairing req

CC2650 CC2652R1
CYBLE-
416045-02

CYW43455 nRF52832

ndata 979.00
{0.00}

534.00
{0.00}

530.00
{0.00}

296.00
{0.00}

318.00
{0.00}

1184.00
{0.00}

530.00
{0.00}

nlen 12.64
{0.25}

11.46
{0.32}

9.84
{0.30}

12.69
{0.37}

9.47
{0.23}

13.54
{0.20}

10.04
{0.24}

Conformance
(random) %

99.92
{0.01}

99.93
{0.02}

99.89
{0.06}

100.00
{0.00}

99.93
{0.06}

100.00
{0.00}

99.94
{0.03}

Conformance
(coverage) %

99.80
{0.02}

99.86
{0.03}

99.82
{0.08}

100.00
{0.00}

99.89
{0.08}

100.00
{0.00}

99.85
{0.09}

Sample 1
(size |SL∗ |)

Correct
model

0 0 0 5 1 5 0

ndata 1958.00
{0.00}

1068.00
{0.00}

1060.00
{0.00}

592.00
{0.00}

636.00
{0.00}

2368.00
{0.00}

1060.00
{0.00}

nlen 12.49
{0.16}

11.62
{0.15}

10.02
{0.20}

12.33
{0.24}

9.61
{0.16}

13.55
{0.10}

10.10
{0.15}

Conformance
(random) %

99.97
{0.01}

99.98
{0.03}

99.98
{0.02}

100.00
{0.00}

100.00
{0.00}

100.00
{0.00}

99.97
{0.02}

Conformance
(coverage) %

99.92
{0.04}

99.96
{0.06}

99.96
{0.04}

100.00
{0.00}

100.00
{0.00}

100.00
{0.00}

99.93
{0.06}

Sample 2
(size

2 · |SL∗ |)

Correct
model

0 2 2 5 5 5 0

ndata 979.00
{0}

534.00
{0}

530.00
{0}

296.00
{0}

318.00
{0}

1184.00
{0}

530.00
{0}

nlen 16.55
{0.05}

9.03
{0.07}

7.46
{0.09}

5.99
{0.07}

4.49
{0.10}

24.08
{0.12}

7.54
{0.07}

Conformance
(random) %

99.93
{0.04}

99.87
{0.04}

99.87
{0.06}

99.81
{0.14}

99.79
{0.10}

100.00
{0.00}

99.91
{0.03}

Conformance
(coverage) %

99.83
{0.09}

99.76
{0.07}

99.76
{0.08}

99.86
{0.10}

99.72
{0.11}

100.00
{0.00}

99.81
{0.04}

Sample 3
(length

[|Q|, 2 · |Q|])

Correct
model

0 0 0 1 0 5 0
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Table 6.4: Active learning results of the MQTT case study. We repeated each experiment five
times. The standard deviation is given in curly brackets ‘{. . .}’. All MQTT automata could be
learned correctly.

ActiveMQ emqtt HBMQTT
Eclipse

Mosquitto
VerneMQ

#Output
queries

5890.40
{695.77}

5900.60
{1834.84}

4009.40
{533.83}

4056.40
{846.08}

4356.20
{976.87}

#Output
queries steps

55771.60
{14265.88}

62134.80
{33276.46}

33176.40
{8277.56}

34335.80
{10979.61}

33850.80
{12344.85}

#Conformance
tests

450
{0.00}

450
{0.00}

425
{0.00}

450
{0.00}

425
{0.00}

#Conformance
tests steps

14721.2
{70.33}

14654.2
{24.69}

13794
{16.41}

14737
{88.12}

13834.4
{87.33}

#Learning
rounds

5.20
{1.30}

5.20
{1.30}

3.60
{0.55}

4.00
{1.00}

5.20
{1.10}

Sum queries
6340.40
{695.77}

6350.60
{1834.84}

4434.40
{533.83}

4506.40
{846.08}

4781.20
{976.87}

Sum steps
70492.80
{14208.67}

76789.00
{33275.29}

46970.40
{8282.37}

49072.80
{10998.34}

47685.20
{12364.07}

nlen
11.04
{1.18}

11.77
{2.21}

10.55
{0.86}

10.85
{1.00}

9.90
{0.66}

#Optimized
queries

1450 1450 959 1015 959

Optimized nlen 6.26 6.26 5.91 6.05 6.05

6.3.3 Discussion

We discuss the presented results based on the following three research challenges:

• (RC 1) Can passive learning based on a random sample compete with active learning?

• (RC 2) Does the considered active automata learning algorithm generate an optimal
sample?

• (RC 3) Can random sampling support active automata learning?

(RC 1) Can passive learning based on a random sample compete with active learning? Ta-
ble 6.3 and Table 6.5 show that passive learning achieved high conformance values, where the
lowest value is 99.72% conformance. This indicates that passive learning approximated the
correct behavior very well with the same resources as active learning.

However, passive learning was not sufficient to achieve 100% conformance in most cases. We
observe a slight difference between the BLE and MQTT results. Table 6.3 shows that passive
learning could learn a conforming automaton. For the CC2652R1 and the CYW43455, the
same sampling budget as for active learning was sufficient to learn a conforming model in all
repetitions. For some experiments, we occasionally observe conforming solutions especially if
we increase the sample size. However, in approximately two-thirds of the experiments, passive
learning did not learn a conforming model.

Table 6.5 shows, that for the MQTT case study, passive learning never managed to learn a
conforming model. Even though the achieved conformance is never below 99.9%, except for one
setup on the HBMQTT. A closer look at the learned models reveals that the passively learned
models have much more states than the minimal solution of the SUL. For example, the learned
models on the HBMQTT have on average 64.4 states, whereas the minimal ground truth has
17. This shows that the learned automata achieve good behavioral conformance, but due to the
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Table 6.5: Passive learning results of the MQTT case study. We repeated each experiment five
times. The standard deviation is given in curly brackets ‘{. . .}’.

ActiveMQ emqtt HBMQTT Eclipse
Mosquitto

VerneMQ

ndata 6340.00
{0.00}

6351.00
{0.00}

4434.00
{0.00}

4506.00
{0.00}

4781.00
{0.00}

nlen 11.00
{0.11}

12.00
{0.05}

10.46
{0.08}

10.98
{0.06}

10.07
{0.10}

Conformance
(random) %

99.97
{0.01}

99.96
{0.01}

99.85
{0.01}

99.95
{0.00}

99.95
{0.02}

Conformance
(coverage) %

99.95
{0.02}

99.94
{0.02}

99.79
{0.02}

99.91
{0.01}

99.92
{0.04}

Sample 1
(size |SL∗ |)

Correct model 0 0 0 0 0

ndata 12680.00
{0.00}

12702.00
{0.00}

8868.00
{0.00}

9012.00
{0.00}

9562.00
{0.00}

nlen 11.02
{0.06}

11.99
{0.03}

10.54
{0.03}

11.00
{0.04}

9.94
{0.05}

Conformance
(random) %

99.98
{0.01}

99.97
{0.01}

99.98
{0.01}

99.98
{0.01}

99.98
{0.01}

Conformance
(coverage) %

99.97
{0.01}

99.97
{0.01}

99.96
{0.02}

99.96
{0.02}

99.97
{0.02}

Sample 2
(size

2 · |SL∗ |)

Correct model 0 0 0 0 0

ndata 6340.00
{0.00}

6351.00
{0.00}

4434.00
{0.00}

4506.00
{0.00}

4781.00
{0.00}

nlen 26.99
{0.05}

27.00
{0.02}

25.52
{0.02}

27.00
{0.15}

25.45
{0.12}

Conformance
(random) %

99.97
{0.01}

99.97
{0.01}

99.99
{0.01}

99.95
{0.06}

99.97
{0.02}

Conformance
(coverage) %

99.96
{0.02}

99.96
{0.02}

99.97
{0.01}

99.94
{0.06}

99.97
{0.02}

Sample 3
(length

[|Q|, 2 · |Q|])

Correct model 0 0 0 0 0
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(a) Conformance heatmap of different sample sizes
for CC2640 (no feature req).

(b) Conformance heatmap of different sample sizes
for Eclipse Mosquitto.

Figure 6.1: The heatmaps show the achieved conformance (%) to corresponding SUL of the
different random sample sizes for one BLE device and one MQTT broker.

missing data, many states could not be merged, which leads to larger automata. Automata with
more than 60 states might be hard to interpret for humans.

The heatmaps presented in Figure 6.1 show that generating a sufficient data set with ran-
dom sampling requires a large sample compared to the sample generated by active learning.
Therefore, passive learning might be sufficient to approximate high-conforming solutions, but
learning the minimal automaton with a classical implementation of RPNI, requires large random
samples.

(RC 2) Does the considered active automata learning algorithm generate an optimal sample?

The results of RC 1 show that learning with RPNI requires a large random sample in order to
learn the minimal conforming automaton. If the goal is to learn a 100% conforming automaton,
active learning might still be the better choice in terms of the number of performed queries.
However, the setup of an active learning interface can be tedious and reliable learning might
require the repetition of queries. Hence, we aim to apply active learning techniques that require
as few interactions as possible with the SUL. Table 6.2 and Table 6.4 compare the number of
queries that are actually required by L∗ with the optimal number of queries. On average SL∗ is
4.45 times larger than the optimized sample for the BLE case study and 4.55 times larger for
the MQTT case study. We observe a similar trend in the comparison of the actual average trace
length versus the optimal average trace length. In practice, it would not be feasible to reduce
the number of queries to the optimal sample size as this would require a perfect equivalence
oracle. However, we still assume that the achieved results by L∗ can be further improved since
the queries performed by L∗ include a lot of redundancy.

(RC 3) Can random sampling support active automata learning? Our results in RC 2 show
that the applied active approach requires a lot more queries than an optimal approach would
require. This raises the question how active learning, especially L∗-based techniques, can be
improved to reduce the required interaction with the SUL. Due to the iterative nature of L∗, we
assume that many queries are prefixes of later performed queries. To overcome this, we want to
investigate whether a pre-initialization of the query cache might help to reduce this redundancy
in the queries.

We initialize the cache that is used in the tested L∗ variant by a randomly generated sample.
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The randomly generated sample fulfills the same properties as Sample 1. Our results show
that initializing the cache in this way does little to save queries. On average, 27% of the queries
were cached in the BLE examples, leaving 73% to be executed on the SUL. For MQTT, we
observe similar results, where on average only 10.6% of the queries were cached. Thus, even if
we initialize the cache with a random sample that has the same size as the sample required to
learn the system, only a minority of queries could be looked up in the cache.

6.4 Conclusion

This chapter presented a comparison between active and passive learning paradigms. The gener-
ation of a fault-tolerant learning interface in active learning can be tedious. The presented case
studies on learning communication protocols in Chapter 4 and Chapter 5 showed that several
countermeasures had to be implemented in order to deal with delayed or lost packets.

In this chapter, we examined whether the effort to develop such an interface is justified.
First, we evaluated if passive learning on random samples is sufficient to adequately model
the system behavior. Our results showed that random samples of the same size as the sample
generated during active learning achieve quite high behavioral conformance. Nevertheless, the
minimal confirming automaton could not be learned in most cases. The main problem was that
the random sample had to be very large to adequately cover the behavior of the SULs. Passive
learning algorithms that can deal with incomplete data might be a possible solution to overcome
this problem. In the next chapter, we will present a novel RNN-based architecture to solve this
problem.

Given the requirement to learn a behavioral model that is equal to the SUL, we rather
accept the effort of creating a reliable learning interface for active learning. For this purpose,
we also compared the effort required by the used L∗ variant in terms of performed queries with
the optimal sample L∗ would require under perfect conditions. The results demonstrated that
the difference is significant. Even if the reduction to an optimal sample would be infeasible in
practice, we still assume that improvements are possible. Even the initialization with a random
sample did not reduce the number of required queries noticeably.

Another direction would be to change the considered active learning algorithm. Tree-based
algorithms such as KV [96] or TTT [89] might help to reduce redundancy in the performed
queries by inferring the characterization set using different techniques. The results of the case
study on VPN presented in Chapter 5 also pointed in this direction.

(RQ 2.1) Does passive learning represent an alternative to active learning?

To compare the passive and active learning paradigms, we investigated whether passive
learning can achieve competing results with a similar budget as active learning. Our
results showed that the passively learned models achieved high conformance scores com-
pared to the ground truth models, where the underlying sample for passive learning was
randomly generated. However, to achieve 100% conformance, large random samples would
have been required to cover the whole behavior of the SUL. Thus, the active learning
efforts were still worthwhile. When active learning is not possible, passive learning with
a random sample provides a highly accurate approximation.

80



(RQ 2.2) How to improve automata learning to make it feasible for different
challenges in networked environments?

Typically, the goal of active automaton learning is to learn a conforming behavioral model
with as little interaction as possible. To reduce the number of interactions required for
active learning, we initialized the internal cache with a random sample. However, it
turned out that random samples based on the active learning budget covered only the
minority of queries that had to be performed.
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Chapter 7

Automata Learning with
Recurrent Neural Networks

Declaration of Resources

This chapter is based on the paper “Constrained Training of Recurrent Neural Networks
for Automata Learning” [12] presented at SEFM 2022 and the article “Learning Minimal
Automata with Recurrent Neural Networks” [14] submitted to the journal “Software and
Systems Modeling” in February 2023.

7.1 Introduction

The previous chapter shows that active learning techniques are preferable compared to passive
learning techniques based on random samples. Classic passive learning techniques such as RPNI
require a large randomly generated sample to learn a behavioral model that adequately represents
the SUL. However, active learning is not always feasible or requires a comprehensive setup. For
this purpose, we require passive learning techniques that better generalize on sparse samples.

Kleene [101] already showed in 1951 that neural networks can simulate finite state machines
that define regular languages. recurrent neural networks (RNNs) are well-suited to model se-
quential behavior. However, trained RNNs often miss interpretability, where their predictions
depend on large real-valued vectors. Behavioral models are usually better interpretable by hu-
mans, which is beneficial for the behavioral analysis of black-box systems. Furthermore, Khmel-
nitsky et al. [98] show that the learned models enable the application of automated techniques
for verifying RNNs using model-checking techniques.

In this chapter, we want to investigate whether machine learning techniques can be used
not only to simulate the behavior of finite state machines, but also to predict their structure,
as is done by automata learning techniques. Gold [73] shows that the problem of inferring a
behavioral model with at most k states is NP -complete. This chapter approaches this problem.
For this purpose, we propose an RNN-based framework that infers Mealy machines from a given
sample of input and output traces. We design an RNN architecture that allows us to simulate
the state-transition and output function of a Mealy machine. The presented RNN architecture
applies a special regularization term for training the RNNs. For learning a minimal finite state
representation, we propose an approach that iteratively converges towards a minimal finite state
representation.

We evaluate our approach on theoretical and practical examples. These examples have been
widely used in the past to evaluate RNN-based learning techniques. In a second case study, we
investigate the practical applicability of our approach, by training an RNN on BLE traces. Our
results show that accurate models can be learned even with a small random sample. However,
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we also show that the size of the SUL presents a non-negligible challenge.

7.2 Background

This section provides background on the RNN architecture under consideration. In addition to
the background provided in Chapter 2 on Mealy machines (Section 2.1), this section discusses
further concepts that are particularly relevant to our RNN-based learning technique.

7.2.1 Recurrent Neural Network (RNN)

RNNs are popular for the simulation of sequential data such as time series data. Hence, we
consider them sufficient to model the behavior of reactive systems. In the following, we consider
a vanilla RNN architecture with hidden layers. A vanilla RNN predicts a corresponding output
on a given input. In a vanilla RNN, the output of the hidden layer is then fed forward as an
additional input to the next input in a sequence.

We define the hidden state ht at the tth step of a sequence as

ht = af(itWhi + ht−1Whh + bh). (7.1)

The hidden state is calculated using an activation function af. In the literature, popular activa-
tion functions are the hyperbolic tangent (tanh) or rectified linear unit (ReLU ). The activation
function takes as parameters the current input vector it and the previous hidden layer ht−1.
Additionally, the activation function considers the weights Whi, Whh, and the bias bh.

We define the output of an RNN ôt to be

ôt = g(Woht + bo). (7.2)

The output ôt is again defined via an activation function g, but for the output prediction usually
the functions softmax and hardmax are applied. The output function takes as parameters the
hidden layer together with the weights Wo and bo. The weights used in the activation functions
of the hidden layer and output are optimized during training to predict the correct outputs.

For the training of an RNN, we use a sample of input/output traces S. We slightly adapt
our notation of traces presented in Section 2.1, to better fit it into an RNN architecture. Let
sj ∈ S be a trace of alternating inputs and outputs, where ij is the corresponding input sequence
and oj is the output sequence of the trace sj . By slightly relaxing the notation, we define that
a sequence sj ∈ S can also be represented by a pair (ij ,oj).

The RNN produces for a given input sequence ij , the output sequence ôj . For the training
of the RNN, we consider the difference between the predicted output by the RNN ôj and the
actual outputs oj . We calculate the difference based on the cross entropy between ôj and oj . To
decrease the difference, we optimize the weights in the activation functions. For this purpose,
we consider a gradient-descent-based optimization.

7.2.2 Addendum to Mealy Machines

In the following, we extend our preliminary remarks to Mealy machines. For this purpose, we
introduce an encoding of Mealy machines for use in common machine learning frameworks. We
discuss techniques for determining bounds on the state space for Mealy machines. Finally, we
introduce the conceptual idea of state minimization in Mealy machines.

Encoding of Mealy machines. To conform to standard RNN architectures, we introduce
an encoding for Mealy machines into a vector-based data structure. Let M = 〈Q, q0, I, O, δ, λ〉
be a Mealy machine as defined in Section 2.1. We encode the finite set of states Q, inputs
I, and outputs O using a one-hot encoding π. In a one-hot encoding, exactly one value in an

84



n-dimensional vector is set to one, whereas all other values are set to zero. The number of
dimensions n of the vector depends on the size of the set that is encoded. For example, for
encoding the finite set of inputs, the size of the vector corresponds to the number of inputs, i.e.,
|I|. We use the same one-hot encoding to encode each input and output in the given sample on
which we train the RNN model.

Example 11 (Encoding of Mealy machines.) The Mealy machine presented in Figure 2.1
defines the finite set of states Q = {q0, q1, q2}, the input alphabet I = {connect, publish, subscribe,
unsubscribe} and the output alphabet O = {ack, closed,message, none}. The following sets can be
represented in the following one-hot encoding:

• π(Q) : {

1
0
0

 ,

0
1
0

 ,

0
0
1

},

• π(I) : {


1
0
0
0

 ,


0
1
0
0

 ,


0
0
1
0

 ,


0
0
0
1

}, and

• π(O) : {


1
0
0
0

 ,


0
1
0
0

 ,


0
0
1
0

 ,


0
0
0
1

},
where the indexes in the sets stay unchanged. Thus, for i ∈ I, i = I[argmax (π(i))] holds, where
argmax function returns the index of the vector element with the highest value. For example,

the input connect in I would be encoded as π(connect) =

1
0
0

.

Bounding of Mealy machines. In Section 2.2.1, we explained that many passive learning al-
gorithms initially build a prefix-tree acceptor (PTA) based on a provided sample. State-merging
algorithms such as RPNI [49] then merge states in the PTA to create a minimal automaton.
Hence, the number of states in the PTA defines an upper bound for the number of states the
learned automaton can define based on the provided sample. For example, based on the PTA
shown in Figure 2.2a an upper bound for the number of states of the learned Mealy machine
would be six since the PTA defines six states for the sample provided in Example 2.

State minimization. Berg et al. [26] discuss that the L∗ algorithm by construction learns
a minimal automaton of a regular language. This property of the L∗ algorithm is based on
the Myhill-Nerode theorem [132]. This theorem defines equivalence classes for strings in a
regular language, where the number of states of a minimal DFA is equivalent to the number of
equivalence classes. Steffen et al. [167] provide a translation of this theorem for Mealy machines.
Let two input sequences i, i′ ∈ I∗ be in the same equivalence class, then

∀z ∈ I∗ : λ∗(i · z) = λ∗(i′ · z) (7.3)

holds. Similar to DFAs, every state in a minimal Mealy machine refers to one equivalence
class. An equivalence class [i] for a state q ∈ Q includes all input sequences that lead to the
state q when executing the input sequence i in the initial state. The initial state corresponds
to the equivalence class with the empty sequence [ε]. Hopcroft et al. [82] show, for DFAs that
correctly define a regular language but are not minimal in the number of states, that there exists
a partition of Q that groups states into the same equivalence class. Based on Equation 7.3, we
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Figure 7.1: Adapted RNN cell that takes as inputs the tth input of a sequence and the prediction
of the (t− 1)th state. A step in the RNN model can be made in the train or infer mode.

can apply this partitioning principle also for Mealy machines. The partition is a set of state sets,
where each set is denoted as blocks B. Each block in the partition corresponds to an equivalence
class. Note that the intersection between the blocks is the empty set. We define state transitions
for an input i ∈ I and a block b ∈ B by δ([b], i) = [b · i]. Based on this construction, we can
build a minimal Mealy machine. Note that every minimal Mealy machine M that represents a
regular language is isomorph to any other minimal Mealy machineM′ that represents the same
language. Hopcroft [81] shows that minimization algorithms can be defined that take O(n log n)
time.

7.3 Method

The goal of our RNN-based learning technique is to create a Mealy machine M that defines an
unknown regular language based on a given sample S. LetMSUL be an unknown Mealy machine
that represents a language L(MSUL). Let k define an upper bound for the number of states of
M. The given sample only includes positive traces, i.e., S ⊆ L(MSUL). Under the assumption
that S sufficiently represents L(MSUL), our approach should satisfy L(M) = L(MSUL), where
M has at most k states.

In the following section, we present our RNN-based training approach. First, we introduce
our developed RNN architecture that predicts the outputs on a given input sequence. We modi-
fied the classical vanilla RNN architecture in such a way that the feed-forward input corresponds
to the next-state prediction simulating a state transition in a Mealy machine. The learning is
based on a two-step procedure: First, we train the RNN model based on the given sample of
traces. Second, we derive from the trained RNN model a Mealy machine with at most k states.
We require for the learning procedure that an upper bound k is provided. Since in a black-box
scenario the minimal number of states might be unknown, we show an algorithm that iteratively
decreases the upper bound in order to learn a minimal Mealy machine.
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7.3.1 Architecture

Figure 7.1 illustrates our RNN architecture. We modified the classical vanilla RNN architecture
in such a way that we do not feed forward the hidden layer ht−1. Instead, we extended the
RNN cell by an adaption that predicts the next state similar to the state transition function of
a Mealy machine. The state prediction is then fed forward to the next step in the execution
of the current sequence. Hence, for a step in the adapted RNN cell, we provide an input it
at a particular step t of an input sequence i and the state prediction qt−1 from the previous
step. Note that our RNN cell distinguishes two modes of operation: “’infer” and “’train”.
Figure 7.1 depicts the following equations that define our RNN cell:

ht = af(qt−1Whq + itWhi + bh) af ∈ {tanh,ReLU } (7.4)

ôt = softmax (htWo + bo) (7.5)

q̂t = softmax (htWq + bq) (7.6)

qt =

{
softmax(Wqht + bq) if mode=“train”

hardmax(Wqht + bq) else (i.e. mode=“infer”)
(7.7)

For the activation of the hidden layer, we either select the hyperbolic tangent (tanh) or the
rectified linear unit (ReLU ). The calculation of the hidden layer considers the current input
and the previous state prediction. The goal of training is that the hidden layer encodes the
state transition at a specific step of a provided input sequence by combining the input with the
state information. The output prediction ôt is normalized by the softmax function. Note that
the correct output ot is provided in the currently executed trace. Hence, we use the prediction
ôt only to calculate the difference to the actual output ot based on the cross entropy of the two
vectors. We use gradient-based optimization to adjust the weights so that the prediction matches
the actual output. To approach a one-hot encoding for state predictions, our optimization also
considers the cross entropy between q̂t and hardmax(q̂t). In the next section, we explain the
training of the RNN model, including details of the loss function.

We execute an input sequence in this RNN model either in the “train” or “infer” mode.
In the “train” mode, we base the activation function for the state vector qt on the softmax
function. During training, we continuously enforce the RNN model to approach a one-hot
encoding for the state prediction. However, at the same time, we want to avoid getting stuck
in a local maximum due to wrong state predictions. We assume that the softmax allows us
to improve state predictions iteratively during training. To simulate the behavior of a Mealy
machine, we execute an input sequence on the RNN cell in the “infer” mode. In the “infer”
mode, state predictions are made using the hardmax . Note that the size of the vector qt creates
an upper bound for the number of states the learned Mealy machine could define.

7.3.2 Training and Automaton Extraction

Forward pass. Algorithm 4 describes the procedure of simulating an input sequence on the
RNN model M . We denote this procedure as forward pass, which takes as input an input
sequence i and the mode in which the RNN model should be executed, i.e., “train” or “infer”.
The forward-pass procedure then returns a pair (ô, q̂) which includes the sequence of output
and state predictions respectively.

The forward pass implements the RNN architecture as explained in the previous section. The
algorithm starts in Line 1 to initialize the sequences of output vectors ô and state predictions q̂
with the empty list. In Line 2, we initialize the current state q with the one-hot-encoded initial
state q0. Thus, every forward pass starts at the initial state.

We iterate through each input of the provided input sequence i starting at Line 3. From
Line 4 to Line 11, we implement our RNN architecture based on the equations that we introduced
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Algorithm 4 Model forward pass M(i,mode)

Input: Input sequence i, Forward pass mode ∈ {“train”, “infer”}
Output: Pair (ô, q̂) of predicted outputs and automaton states, respectively

1: ô, q̂← [ ], [ ]
2: q ← π(q0)
3: for t← 0 to #steps(i) do
4: h = af (qWhq + itWhi + bh) . af ∈ {ReLU, tanh}
5: ôt ← softmax (Woh+ bo)
6: q̂t ← softmax (Wqh+ bq)
7: if mode = “train” then
8: q ← q̂t
9: else . mode = “infer”

10: q ← hardmax (Wqh+ bq)
11: end if
12: end for
13: return (ô, q̂)

in the previous section. Note that we assume that the activation function af for the hidden layer
in Line 4 is globally set depending on the currently executed experiment. We either consider
tanh or ReLU as activation functions.

By iterating through the input sequence, we collect in each step the output prediction ôt
(Line 5) and the state prediction q̂t (Line 6), where both are normalized using the softmax
function. Hence, we enforce a categorization of the predicted values, where each value is between
zero and one and the values of the vector sum up to one. Depending on the mode in which the
RNN model is executed, we either feed-forward the hardmax or softmax prediction of the next
state.

RNN training. Algorithm 5 describes the training procedure of our RNN model. The goal of
training is to learn the weights used in the equations that define our RNN model to make accurate
predictions about output and state behavior. In classic RNN-based training approaches, we aim
to avoid overfitting the training data to make general predictions on unknown inputs. However,
for inferring a deterministic behavioral model, we explicitly target overfitting. More precisely,
we train the RNN model until it correctly predicts all outputs of the given sample. Note that
for training, we do not consider any state behavior from the unknown Mealy machine MSUL.
We only consider the output behavior provided by the given sample.

Algorithm 5 takes as input the RNN model M and the sample S of input and output traces.
We train the RNN model for a maximum of #epochs ∈ N iterations. Furthermore, we consider
a constant factor C ∈ R that regularizes the influence of state predictions in the loss function.
The algorithm returns the trained RNN model M and a Boolean variable converged indicating
whether training has converged. Our algorithm converges if M correctly predicts all outputs.

The algorithm starts with the initialization of variables. To optimize our weights in the
activation functions, we use the Adam optimizer [100] which implements a stochastic gradient-
descent-based optimization. In Line 1, we initialize Adam with its standard configuration. We
train the RNN model for a maximum number of epochs, given by #epochs. In each epoch, we
iterate through every trace in the provided sample S starting in Line 4. We first perform the
forward pass in the RNN model given the current input sequence i as described in Algorithm 4.
For training, we forward pass i in the training mode. Based on the returned predicted outputs
otr and states qtr, we then calculate the loss in Line 6. The loss term includes the cross entropy
between the output predictions otr and the actual outputs o from the current trace in the
sample. Furthermore, we want to enforce the prediction of the next state to conform to a one-
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Algorithm 5 RNN training train(M,S)

Input: Initialized RNN model M , Training sample S = {(i1,o1), . . . , (im,om)}, #epochs, Reg-
ularization factor C

Output: Pair of Boolean variable converged indicating accuracy and trained RNN model M
1: optimizer ← Adam(M)
2: converged ← ⊥
3: for i← 1 to #epochs do
4: for (i,o) ∈ S do
5: ôtr, q̂tr ←M(i, “train”)
6: loss ← cross entropy(o, ôtr) + cross entropy(hardmax (q̂tr), q̂tr)× C
7: loss.backward()
8: optimizer .step()
9: end for

10: accinf ← 0
11: for (i,o) ∈ S do
12: ôinf , q̂inf ←M(i, “infer”)
13: accinf ← accinf + accuracy(o, ôinf)/|S|
14: end for
15: if accinf = 100% then
16: converged← >
17: break
18: end if
19: end for
20: return (converged,M)

hot encoding. For this, we extend our loss function by a regularization term that considers the
cross entropy between the state predictions qtr and the hardmax of the same predictions. The
influence of this regularization term can be controlled by the constant C. Line 7 computes then
the gradients during the backward pass. We optimize the weights of our RNN model in Line 8.

After training the RNN model on all traces in S, we evaluate the trained model. For the
evaluation, we again iterate through the whole sample in Line 11 and simulate each trace on
M . This time, however, we perform the forward pass in the infer mode (Line 12). By doing
so, we evaluate how well the trained RNN model simulates a Mealy machine. We define the
accuracy of the RNN model based on the output prediction and the actual output in the trace.
We accumulate all accuracy values in Line 15. In the case that the model predicts all output
values correctly, it would achieve 100% accuracy. In Line 15, we check if all outputs have
been predicted correctly. If this is the case, we set the Boolean variable converged to true and
terminate the training procedure. Otherwise, we continue training the RNN model for another
epoch. Training is repeated for a maximum number of epochs.

Automaton extraction. Algorithm 6 describes the second step in our RNN-based learning
method, in which we extract the Mealy machine from the trained RNN model.

The extraction algorithm takes as input the trained RNN model M and the sample S, and
returns the generated Mealy machine M. The algorithm starts by extracting the input and
output sets in Line 1 from S. Line 2 initializes the finite set of states Q with the initial state q0.

We then extract the state transitions and output transitions by executing the sample on the
trained RNN model. From Line 3 to Line 18, we iterate through each trace in the sample. First,
we forward pass the input sequence on M using the “infer” mode to simulate the behavior of a
Mealy machine. Next, in Line 6, we iterate through each step of the current trace. For each step
in the trace, we extract the index of the predicted next state in Line 7. The input and output
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Algorithm 6 Automaton extraction from RNN extract(M,S)

Input: Trained RNN model M , Training data S = {(i1,o1), . . . , (im,om)}
Output: Mealy machine M = 〈Q, q0, I, O, δ, λ〉

1: I,O ← inputs(S), outputs(S)
2: Q = {q0}
3: for trace ← (i,o) ∈ S do
4: ô, q̂←M(i, “infer”)
5: state index ← 0
6: for t← 0 to #steps(trace) do
7: state index ′ ← argmax (q̂t)
8: i, o← argmax(it), argmax(ot)
9: if o = argmax(ôt) then

10: q, q′ ← qstate index , qstate index ′

11: Q← Q ∪ q′

12: inp, out← I[i], O[o]
13: δ(q, inp)← q′

14: λ(q, inp)← out
15: else
16: break
17: end if
18: state index ← state index ′

19: end for
20: end for
21: return M

index are taken directly from the sample (Line 8). In Line 9, we check if the predicted output
is equal to the corresponding output in the trace. If this is the case, we define the source and
target state, q and q′ respectively. After updating the set of states Q, we extract the input and
output based on the given alphabet in Line 12. As a last step, we extend the state transitions
function δ and output function λ in Line 13 and Line 14 respectively.

If the predicted output does not match the output in the currently considered trace, we
terminate the iteration through this trace and proceed to the next trace in the sample. After
iterating through each trace, we return the generated Mealy machine M.

7.3.3 Learning Minimal Automaton

The previous chapter introduces the two-step procedure, where we first train an RNN model and
then extract from the trained model a Mealy machine. Note that the initialization of the RNN
model requires an assumption about the number of states. In practice, such an assumption can
hardly be made. To overcome this problem, we propose an iterative procedure that continuously
decreases the maximum number of states until a fixpoint is reached.

Algorithm 7 describes our fixpoint algorithm in order to learn a minimal automaton. The
algorithm requires as input an integer #runs, which defines a maximum budget for reducing
the assumed upper bound of states. For training the RNN model, we require a sample of traces.
Our fixpoint algorithm distinguishes two strategies for finding a minimal Mealy machine. We
distinguish between the best-effort and exhaustive strategy. By using the best-effort strategy, we
immediately reduce the considered upper bound of states in case we found an accurate model.
The exhaustive strategy, instead, always uses the maximum budget to find a minimal solution
and continues in the next iteration of the fixpoint algorithm with the lowest solution found in
the previous iteration. A fixpoint is reached if no further reduction in the number of states can
be found. In this case, the algorithm returns the minimal found automaton Amin and a Boolean

90



Algorithm 7 Minimal automaton learning fixpoint(S, strategy)

Input: Trials budget #runs, Training dataset S = {(i1,o1), . . . , (om,om)}, Minimization strat-
egy ∈ {“bestEffort”, “exhaustive”}

Output: Pair of best learned automaton Amin, and Boolean variable approvedmin indicating
whether a fixpoint has been reached

1: Amin ← PTA(S)
2: repeat
3: statesmin ← statesn(Amin)
4: approvedmin ← ⊥
5: for i← 1 to #runs do
6: M ← RNN (statesmin)
7: converged ,M ← train(M,S)
8: if converged then
9: A← extract(M,S)

10: A← minimize(A)
11: if statesn(A) < statesn(Amin) then
12: Amin ← A
13: else
14: approvedmin ← >
15: end if
16: if strategy = “bestEffort” then
17: break
18: end if
19: end if
20: end for
21: until statesmin = statesn(Amin)
22: return (Amin, approvedmin)

variable approvedmin that indicates if the minimal solution can be reproduced, i.e., if the fixpoint
has been reached.

Algorithm 7 starts by determining an initial upper bound. To determine the initial upper
bound, we use the approach that we introduced in Section 7.2.2. Based on the given sample,
we build a PTA that serves as the initial minimal automaton Amin from which we derive the
upper bound. We then search for the minimal automaton in an iterative manner from Line 3
to Line 20. Note that in general any upper bound greater or equal to the minimum number of
states of the ground truth Mealy machine can be set at this point.

In Line 3, the fixpoint iteration starts by setting the upper bound based on the minimal
automaton found so far. The automaton Amin represents a Mealy machine and can also be
written as Amin = 〈Q, q0, I, O, δ, λ〉. The function statesn returns the number of states of the
provided automaton, which is equal to |Q|. We start a finite number of iterations, where we try
to approve the fixpoint or search for an automaton representation with fewer states. In each
iteration, we train an RNN model using the given sample. For this purpose, we then initialize
the RNN model based on the current upper bound statesmin in Line 6. Afterwards, we start
the training as explained in Algorithm 5. The training algorithm returns the trained model
M and a Boolean variable converged that indicates if M achieved 100% accuracy in predicting
the outputs of the given sample. If this is the case, we call Algorithm 6 to extract the Mealy
machine A in Line 9.

In Line 10, we minimize the learned model A. Our rationale for this step is that our proposed
RNN-based learning technique does not provide guarantees for learning a minimal model, as is
the case with algorithms such as L∗. Therefore, it is possible that with an assumed upper bound
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Table 7.1: Overview on the investigated Tomita grammars.

Grammar Description # States

Tomita 1 strings of the form 1∗ 2
Tomita 2 strings of the form (1 0)∗ 3
Tomita 3 strings that do not include an odd number of consecutive 0 symbols

following an odd number of consecutive 1 symbols
5

Tomita 4 strings without more than 2 consecutive 0 symbols 4
Tomita 5 strings with an even number of 0 and even number 1 symbols 4
Tomita 6 strings where the difference between the numbers of 0s and 1s is divisible

by three
3

Tomita 7 strings of the form 0∗1∗0∗1∗ 5

of states larger than the size of the minimal model, the RNN model may use a larger state space
to model the behavior, while the learned model is still accurate. To minimize these models, we
apply a minimization algorithm for Mealy machines as explained in Section 7.2.2. The costs for
the minimization procedure are negligible, especially compared to the NP -complete problem of
inferring a behavioral model with n states from a given sample.

Line 11 then compares if the minimized model A has fewer states than the so far found
most minimal solution Amin. If this is the case, A replaces Amin in Line 12. Otherwise, if A
does not represent an even more minimal solution, we approve that the fixpoint is reached. In
the case of the best effort strategy, we terminate in both cases the current set of runs, whereas
the exhaustive continues the current iteration with the upper bound statesmin to search for a
solution with fewer states. The algorithm starts a new set of runs in case we found in the
previous iteration a Mealy machine with fewer states. Otherwise, the algorithm terminates if
no further minimization has been performed.

7.4 Case Studies

The following section presents case studies that evaluate our RNN-based learning technique. For
our case study, we consider theoretical and practical examples. For our evaluation of theoretical
examples, we consider a set of regular languages that have frequently been used for benchmarking
RNN-related learning techniques [53, 130, 136, 190]. For the evaluation of practical applicability,
we provide the approach with traces monitored on a subset of the investigated BLE devices from
the BLE case study presented in Chapter 4. In these case studies, we first evaluate whether
our approach functions in principle by evaluating it under perfect conditions. Perfect conditions
mean that the minimal number of states is known and that a sample covers all behavioral aspects
of the SUL. Hence, the sample fulfills similar properties as the one that we used to evaluate
the L∗ algorithm in Chapter 6. We slightly relax this assumption in another evaluation, where
we provide a random sample but still under the assumption that the minimum state number is
given. In the second part of our evaluation, we then consider the more realistic assumption that
the minimal number of states is unknown. For this purpose, we evaluate our iterative approach
to learn minimal automata on a comprehensive and a random sample.

7.4.1 Evaluation

We evaluate our approach on the Tomita grammars [178] and on three BLE devices.

Tomita Grammars. Table 7.1 provides an overview of the considered Tomita grammars.
The benchmark set includes seven different regular languages. The languages are defined on
a binary alphabet that only considers the characters ‘0 ’ and ‘1 ’. The benchmark contains
examples that are frequently mentioned in the literature such as Tomita 5 which is equal to the
running example in Angluin’s article explaining the L∗ algorithm [17]. The Tomita grammars
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are commonly represented as DFAs, but we consider for our RNN architecture Mealy machine
equivalents. The outputs in these equivalents define whether a string is part of the language,
indicated by ‘true’ or ‘false’. Tomita grammars are well known in the literature [53, 130, 136, 190]
to evaluate RNN-related automata learning approaches.

Bluetooth Low Energy (BLE). As a second case study subject, we consider a subset of the
BLE devices that we investigated in Chapter 4. The subset includes the following three system
on the chips (SoCs) of the six devices presented in Table 4.1:

• CC2650 (5 states),

• CYBLE-416045-02 (3 states), and

• nRF52832 (5 states).

We select these three SoCs since they were learnable considering the whole input alphabet.
All the BLE devices run the same application as stated in Table 4.1. For our experimental
evaluation, we extended the input alphabet by one input. Hence, the input alphabet includes
ten different inputs. We consider as additional input the termination indication, denoted by
termination req. The additional input does not increase the number of states of the ground
truth models and behaves equally to the scan request. We add this input since we use it in active
automata learning to reset the device. By adding this input, we can reuse traces generated by
our active automata learning setup.

7.4.2 Sample Generation

Active automata learning (AAL) sample. To provide a sample that is considered to be
complete in the sense that it covers all behavioral aspects of the SUL, we collected all the
queries performed during active learning. Hence, the sample is considered to be complete in
such a way that an active learning algorithm could learn the behavioral model from the set of
traces. For active learning, we applied the L∗ algorithm with the improvements proposed by
Rivest and Schapire. The sample also includes the traces performed by the equivalence oracle in
order to test conformance between the SUL and the provided hypothesis. The used equivalence
oracle provides state coverage for the tested hypothesis in combination with randomized inputs.
Thus, the sample is equal to the active learning sample described in Section 6.2.2. As presented
in Chapter 6 the set of performed queries by L∗ is not minimal and might include redundant
behavioral information. However, we assume that a larger sample with possible redundant
information is beneficial for our evaluation. To actively learn the behavioral models, we used
the learning library AALpy [129]. We refer to the sample generated by active automata learning
as AAL sample.

We generate the traces for the BLE experiments by actively learning the real BLE devices. As
previously explained, we consider this time an input alphabet that is extended by the termination
request. Thus, the alphabet includes ten different inputs. For this purpose, we reused the
learning setup as proposed in Chapter 4. Our sample contains all the traces that are executed
on the SUL. Since we collected traces from the real device, we might observe non-deterministic
behavior. For this purpose, we post-process the sample in order to remove traces that show
non-deterministic behavior.

Random sample. For the generation of the random sample, we generate ndata random walks
through the SULs starting at the initial state. The random sample generation is similar to the
generation procedure defined in Algorithm 3 with the exception that we assume that our random
sample is a set of traces instead of a list, since we aim to avoid redundant traces. Hence, we
only add a randomly generated trace to the sample if it is unique compared to all other traces
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Table 7.2: Learning results on Tomita grammars, where the minimal number of states is given.
In all cases, we learned the correct automaton.

Sample
Size

Trace Length
(avg) {std}

RNN
af #hl C #e t (sec)

Tomita 1
AAL 41 8.4 {4.5} ReLU 1 0.001 5 3

Random 10 6.2 {3.4} ReLU 1 0.001 9 1

Tomita 2
AAL 73 9.5 {5.3} tanh 1 0.001 12 14

Random 100 6.7 {2.3} tanh 1 0.001 4 5

Tomita 3
AAL 111 10.4 {4.9} ReLU 2 0.001 79 233

Random 500 7.8 {1.9} ReLU 2 0.001 28 305

Tomita 4
AAL 83 10.4 {5.2} tanh 1 0.001 34 53

Random 50 5.8 {2.5} tanh 1 0.001 11 5

Tomita 5
AAL 91 9.3 {4.7} ReLU 1 0.001 16 26

Random 50 6.2 {2.8} ReLU 1 0.001 24 15

Tomita 6
AAL 68 8.6 {4.6} ReLU 1 0.001 5 5

Random 20 5.5 {2.5} ReLU 2 0.001 12 3

Tomita 7
AAL 115 10.4 {5.1} ReLU 1 0.001 21 44

Random 50 6.5 {2.3} tanh 1 0.001 31 21

in the sample. For the random walks on the BLE devices, we aim to simulate a complete BLE
session. Hence, each randomly generated trace includes as a last input a termination request,
indicating the end of a BLE session.

7.4.3 Learning with Given States

This section presents the results of the case study, where we assume that the number of minimal
states is known. Hence, we can initialize the RNN architecture in such a way that the dimension
of the state vector is equal to the size of the minimal automaton representation.

All experiments are performed on a Dell Latitude 5501 with an NVIDIA GeForce MX150
and an Intel Hexa-Core I7-9850H operating at 2.60 GHz with 32 GB memory running Windows
10. Throughout all experiments, we set the number of neurons in a single hidden layer to 256,
and the learning rate of the Adam optimizer to 0.001.

Table 7.2 presents the results on learning the Tomita grammars with our RNN-based learning
technique given the AAL and random sample. We present our results based on the sample size
and the average trace length with the standard deviation (std). In addition, we provide the
parameters on the used RNN-architecture, i.e., the applied activation function (af ), the number
of hidden layers (#hl), and the regularization factor C. We present also performance results by
providing the number of required epochs (#e), and the required runtime (t) in seconds (sec).

The results are promising since we managed for all Tomita grammars to learn the correct
Mealy machine. This was possible with the AAL sample and with the random sample. We
checked the correctness of the learned models with a bisimilarity check to the ground truth
automaton. That the learned Mealy machines are minimal is given by the constraint that the
state vector admits only a one-hot-encoding for the minimal number of states. We hyper-tuned
the parameters of the learning framework to learn the correct automaton in as few episodes and
in as short a time as possible. We managed to learn a correct solution within 4 to 79 epochs.
The shortest learning attempt took only one second, whereas the longest required a bit more
than 5 minutes. To our surprise, we were able to learn correctly in most cases with fewer and
shorter random samples than the AAL sample. Exceptions to this observation are Tomita 2
and Tomita 3. Most of the time we used the same RNN parameter setup for one grammar
independent of the sample generation method.

Table 7.3 provides the same overview of the result for learning the BLE devices. The structure
and notation of the table are equal to Table 7.2, except that the runtime is stated in minutes
(min) and seconds (sec). For conducting the BLE experiments, we used the same RNN setup for
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Table 7.3: Learning results on BLE experiments, where the minimal number of states is given.

Sample
Size

Trace Length
(avg) {std}

RNN
af #hl C #e t (min:sec)

CYBLE-416045-02
AAL 272 4.0 {1.0} ReLU 1 0.01 5 0:12

Random 100 11.5 {8.6} ReLU 1 0.01 29 0:59

CC2650
AAL 473 5.1 {2.1} ReLU 1 0.001 162 13:30

Random 1000 11.8 {7.8} ReLU 1 0.001 42 14:48

nRF52832
AAL 447 4.6 {1.1} ReLU 1 0.001 21 1:30

Random 1500 12.1 {8.1} ReLU 1 0.001 21 11:18

each experiment. For training the RNN, however, we consider different values for the constant C
that allows us to steer the influence on the used regularization term in the applied loss function.
In contrast to the learning setup for Tomita grammars, we considered the fact that the BLE
traces always describe a completed BLE session, where the last input resets the connections to
the initial state. Hence, we extended the loss function to consider the cross entropy between the
prediction of the last state and the initial state. Again, our proposed learning algorithm manages
for all BLE devices to learn a Mealy machine that is isomorph to the ground truth. However,
the BLE learning results present a different outcome on the random sample. In all cases, the
traces in the random sample are on average longer than the AAL samples. Furthermore, in two
out of three cases, we required more random samples to learn correctly. This correlates with
our evaluation comparing active and passive techniques presented in Chapter 6.

We assume that the differences between the Tomita and BLE results relate to the complexity
of the BLE example. Even though the number of states for both case studies is within the same
range, we observe a large difference in the size of the input and output alphabet. Hence, we
require more random samples to cover the behavior adequately.

7.4.4 Learning Minimal Automata

Our previous results show that our RNN framework is capable of learning the correct Mealy
machine. However, we also examine whether this prerequisite of knowing the minimum number
of states can be neglected. For this purpose, we evaluate our presented iterative algorithm for
learning minimal automata. The evaluation again considers as case study subjects the seven
Tomita grammars and the three BLE devices. Again, our evaluation compares the results of the
AAL sample and the random sample.

Our achieved results depend on two types of randomness: the randomness in generating the
samples and the randomness in training the RNN model. Hence, we repeat each experiment
ten times and present the average values. The parameter setup for each experiment is equal
to the one used for the corresponding experiment in Section 7.4.3. Due to a large number of
experiments, we ran the following experiments on a scientific cluster based on Intel R© Xeon R©

Gold 6230R CPU at 2.10 GHz and Ubuntu 20.04.
In the evaluation of our minimization algorithm, we observe four different outcomes:

1. Minimal automaton learned and fixpoint approved

2. Training does not converge within the given budget

3. Learned automaton is not minimal

4. Incorrect automaton due to missing data

Minimal automaton learned and fixpoint approved (Outcome 1). In this case, we
learn the minimal automaton and the achievement of the fixpoint can be approved. Note that
this takes in our setup at least two iterations in our minimization algorithm. In the first iteration,
we minimize the number of states and in the second iteration, we approve the fixpoint.
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Training does not converge within the given budget (Outcome 2). The training algo-
rithm does not converge, which means that the RNN model cannot be trained within the given
budget to predict all outputs correctly.

Learned automaton is not minimal (Outcome 3). The learned automaton is not minimal
and cannot be further minimized. In this case, the RNN learned a non-conforming solution, but
the sample does not include any long enough counterexample that reveals the wrong behavior.
Thus, the learned model does not generalize the actual behavior well enough.

Incorrect automaton due to missing data (Outcome 4). The randomly generated sam-
ple misses behavior. In this case, the learned model conforms to the sample, but the sample is
not sufficient to model the correct minimal automaton.

Table 7.4 and Table 7.5 present the results of our evaluation for learning minimal automata
with our RNN-based learning technique. We present the results using the following metrics,
where std always denotes the standard deviation of the averaged values:

• #e (strategy). Given budget based on the number of epochs (#e) and the strategy applied,
where “be” denotes the best effort and “ex” the exhaustive strategy.

• Learned (%). Percentage of learning attempts where an automaton could be learned within
the given budget.

• Learned min. (%). Percentage of the learned automata that are minimal and correct.

• Learned wrong. (%). Percentage of the learned automata that are not minimal and cannot
be minimized.

• Sample incompl. (%). Percentage of the learned automata that cannot be correctly learned
since the sample misses behavior.

• Initial state bound (avg) {std}. Average of the initial sizes of the state vectors in the first
iteration based on the PTA generated from the provided sample.

• #Iteration (avg) {std}. Average of iterations performed to reach the fixpoint.

• #Iteration (avg) {%}. Average of the maximum number of reduced states via minimizing
the learned automaton, and the percentage of applied state reductions.

• #Time [min:sec] (avg) {std}. Average runtime of the learning algorithm.

Table 7.4 provides the results of the Tomita experiments. The results show that when the
training converges and we were able to extract an automaton, we always learned the correct
minimal automaton using the best-effort strategy. The results also indicate that we always
learned the minimal solution within the minimum number of iterations, except for Tomita 1,
where learning on the random sample required three iterations twice. In the majority of the
cases, we could reduce the number of iterations by minimizing the extracted automaton from
the RNN. We observe that the RNN could significantly reduce the number of states within the
first iteration, where the learned automaton is correct, but most of the time not minimal. By
minimizing the learned automata, we could commonly approve the fixpoint in the next iteration.

For all Tomita experiments, where we did not achieve 100% correctness, since training did
not converge within the given budget epochs (Outcome 2). Given the budget of 100 epochs, our
training performed worse for Tomita 5 and Tomita 7 on the AAL sample. Hence, we repeated our
approach with a budget of 200 epochs, which was most of the time sufficient to learn the correct
minimal iterations within two iterations. Learning took between 4 seconds and approximately
43.5 minutes.
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Table 7.4: Learning results on Tomita grammars, where the minimal number of states is unknown.

Use Case
#e

(strategy)
Learned

(%)
Learned
min. (%)

Learned
wrong

(%)

Sample
incompl.

(%)

Initial state
bound

(avg) {std}

#Iteration
(avg) {std}

#States
reduced
(avg) {%}

Time [min:sec]
(avg) {std}

Tomita 1
AAL 100 (be) 100 100 0 0 207 {0} 2 {0} 1 {90} 36 {33}

Random 100 (be) 100 100 0 0 44 {9} 2.2 {0.4} 1 {60} 4 {2}

Tomita 2
AAL 100 (be) 100 100 0 0 390 {0} 2 {0} 1 {100} 2:18 {1:22}

Random 100 (be) 100 100 0 0 227 {17} 2 {0} 1 {90} 45 {43}

Tomita 3
AAL 100 (be) 90 100 0 0 545 {0} 2 {0} 1.43 {78} 43:28 {23:15}

Random 100 (be) 100 100 0 0 740 {11} 2 {0} 3 {90} 43:01 {37:01}

Tomita 4
AAL 100 (be) 80 100 0 0 459 {0} 2 {0} - {0} 20:33 {31:59}

Random 100 (be) 80 100 0 0 135 {7} 2 {0} 1.14 {88} 5:27 {3:31}

Tomita 5
AAL 100 (be) 10 100 0 0 436 {0} 2 {0} - {0} 3:42 {0}

Random 100 (be) 100 100 0 0 135 {7} 2 {0} 1 {40} 4:42 {3:29}
AAL 200 (be) 80 100 0 0 436 {0} 2 {0} 1.88 {100} 37:22 {39:28}

Tomita 6
AAL 100 (be) 100 100 0 0 308 {0} 2 {0} 2.4 {100} 2:03 {1:50}

Random 100 (be) 100 100 0 0 70 {8} 2 {0} 1.6 {50} 24 {20}

Tomita 7
AAL 100 (be) 60 100 0 0 564 {0} 2 {0} - {0} 3:35 {12:30}

Random 100 (be) 80 100 0 0 135 {7} 2 {0} 1 {40} 3:51 {2:28}
AAL 200 (be) 100 100 0 0 564 {0} 2 {0} 1 {40} 31:12 {18:29}

Table 7.5: Learning results on BLE devices, where the minimal number of states is unknown.

Use Case
#e

(strategy)
Learned

(%)
Learned
min. (%)

Learned
wrong

(%)

Sample
impcompl.

(%)

Initial state
bound

(avg) {std}

#Iteration
(avg) {std}

#States
reduced
(avg) {%}

Time [min:sec]
(avg) {std}

CYBLE-
416045-02

AAL 200 (be) 100 100 0 0 547 {0} 2.4 {0.5} 1 {100} 1:30 {31}
Random 200 (be) 90 67 0 33 946 {57} 2.6 {0.7} 1 {67} 24:30 {36:35}

CC2650
AAL 200 (be) 100 10 90 0 1180 {0} 3.3 {0.7} 3 {10} 57:08 {1:06:56}

Random 200 (be) 90 78 11 11 9564 {161} 2.6 {0.7} 4 {78} 13:02:51 {11:22:21}
AAL 200 (ex) 80 87.5 12.5 0 1180 {0} 2.8 {0.4} 4.4 {87.5} 3:40:51 {42:21}

nRF52832
AAL 200 (be) 100 100 0 0 896 {0} 2.7 {0.5} 1.67 {100} 6:09 {4.02}

Random 200 (be) 100 100 0 0 14109 {400} 2.1 {0.3} 1.67 {100} 3:58:09 {2:37:52}
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Table 7.5 presents the results of learning the minimal automaton of the BLE devices. Similar
to the results, where the minimal number of states is given, we observe more difficulties in
learning these case study subjects. Even though we could learn in most cases an automaton,
the automaton was sometimes different from the correct minimal automaton. This problem was
commonly observable when learning the CC2650 with the AAL sample. For this example, we
learned an automaton that was not minimal and not be further minimized (Outcome 3). Thus,
the learned automaton generalizes wrongly on the provided sample. We overcome this problem
by switching to the exhaustive strategy, where we search for more solutions. With the exhaustive
strategy, we were able to learn the correct minimal automaton of CC2650 in most cases.

We observe a second problem in the experiments that use a random sample. For these
experiments, the generated random sample does not cover the entire behavior of the SUL in all
cases. In this case, we learned an automaton that conforms to the provided sample but not to
the ground truth automaton (Outcome 4). We also observe that learning took in the worst case
significantly longer requiring more than 13 hours for learning. However, we also observe fast
learning on the CYBLE-416045-02 where the average runtime was 1.5 minutes.

Both tables show that within a small number of iterations, the minimal solution could be
learned. We also see that our RNN architecture does not hinder an immediate reduction of the
state space. Thus, we could learn an approximate minimal solution even if the state vector is
large.

7.5 Conclusion

This chapter evaluated the applicability of machine learning techniques for mining finite state
machines. We approached the problem of learning a Mealy machine with at most k states from a
given sample. For this purpose, we presented a passive learning technique that utilizes an RNN
architecture to learn behavioral models of reactive systems. Our proposed RNN model not only
predicts the output behavior but also the state behavior as similar to state transition functions
in Mealy machines. We trained the model using a special regularization term that forced the
state prediction towards a single state. From the trained RNN model we then simply extracted
a Mealy machine by replaying the provided sample. In addition, we presented an extension of
this RNN-based approach to learn minimal automata.

The results of our case study showed promising results, especially when the number of states
is known. In our case studies, we evaluated our approach on a benchmark with theoretical
examples and on samples of BLE traffic from three different devices. We were able to learn the
correct automata for all the case studies we evaluated. We could learn the minimal automata
for the theoretical examples, even when the number of states is initially unknown. Learning the
BLE devices without the given number of states was more challenging. We suspect that the
cause of the observed problems is the larger size of the models with respect to the larger input
and output alphabet. However, we proposed an exhaustive learning strategy that allows the
generation of the correct model. In practice, we recommend following this exhaustive strategy
when resources are available and the input and output alphabets are larger. However, this also
requires multiple iterations of training the RNN model, which can be time-consuming.
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(RQ 2.1) Does passive learning represent an alternative to active learning?

Our novel RNN-based learning technique provided promising results for learning behav-
ioral models based on a given sample. If the number of states is known, we managed to
learn all investigated case study subjects. The results also showed that a small random
sample was sufficient to learn the correct behavioral model, especially for SULs with a
small input and output alphabet. However, for systems with a larger alphabet, more
random samples were required. We also proposed strategies to solve the problem that
the number of states had to be known. We could find a setup for all examples where
the majority of learned models represented minimal automata that were isomorphic to
ground truth automata when the final number of states was unknown.
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Chapter 8

Learning
Abstracted Non-Deterministic
Finite State Machines

Declaration of Resources

This chapter is based on the paper “Learning Abstracted Non-deterministic Finite State
Machines” [146] presented at ICTSS 2020. The proposed optimizations were implemented
in the learning library AALpy [129] by Konstantin Windisch as part of his Bachelor’s
Thesis [193], which was co-supervised by the author of this thesis.

8.1 Introduction

The following chapter provides a learning algorithm for non-deterministic systems. The pre-
sented algorithm approaches two problems that hamper the application of automata learning in
practice: (1) large input and output alphabets, (2) non-deterministic observations due to timed
or stochastic behavior.

In the previously presented case studies on learning communication protocols, we observed
both problems. Usually, communication protocols consider a large input and output alphabet
as the packets can contain arbitrary character sequences. We overcome the problem of a large
input and output alphabet by learning with abstracted input and output symbols instead. To
the best of our knowledge, Cho et al. [38] were the first that applied such an abstraction to learn
network protocols. However, finding such an alphabet abstraction is not always straightforward
since a too-coarse abstraction could lead to non-deterministic behavior.

To overcome the second problem, we developed in the previous case studies domain-specific
learning setups to filter out messages or to adapt response timeouts. However, some systems
still behaved non-deterministically as shown in the BLE case study presented in Chapter 4.

In the following, we present a learning algorithm that creates an observable non-deterministic
finite state machine (ONFSM) of a black-box system. To make the learning of large systems
feasible, we introduce a two-layer-based abstraction technique. Our learning algorithm follows
Angluin’s L∗-based learning approach [17], but extends the MAT framework by two abstraction
layers.

We evaluate our presented learning algorithm for learning the behavioral models of five
different MQTT brokers. Tappler et al. [170] show that learning behavioral models of MQTT
brokers is feasible. However, they limit their case study to learning setups where one or two
clients interact with the MQTT broker. We show that our learning technique enables learning
in a multi-client setup within a feasible amount of time. We compare our technique to a setup
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that follows an approach similar to that presented by Tappler et al. [170]. The results show
that our method creates a concise generalization within a reasonable amount of time, especially
when we compare our method to the runtime required by a setup similar to Tappler et al. [170].

The chapter is organized as follows. First, we provide a formal definition of ONFSMs and
slightly adapt the definition of observation tables. In Section 8.3, we then introduce our learning
framework, the applied abstraction concepts, and introduce our learning algorithm. Section 8.5
presents the case study on learning five different MQTT brokers in a multi-client setup. Sec-
tion 8.6 introduces briefly the integration of the presented learning algorithm into the learning
library AALpy. We conclude this chapter in Section 8.7.

8.2 Background

8.2.1 Observable Non-deterministic Finite State Machine (ONFSM)

ONFSMs are a special type of non-deterministic input/output automata, where the state tran-
sition function defines exactly one state for a triplet of a given state, an input, and an output.

Definition 6 (Observable Non-deterministic Finite State Machine) We define an
ONFSM M as a five-tuple 〈Q, q0, I, O, δ〉, where

• Q is the finite set of states,

• q0 is the initial state,

• I is the finite set of inputs,

• O is the finite set of outputs, and

• δ : Q× I ×O → Q is the state transition function.

We define ONFSM as input enabled, where every input i ∈ I is defined for every state
q ∈ Q at least once. We call a non-deterministic finite state machine observable if a triplet
(q, i, o) ∈ Q × I × O defines exactly one target state q′ ∈ Q in the state transition function δ.
Note that a pair (q, i) ∈ Q × I can be defined multiple times for a state q and based on the
output o ∈ O it is observable which transition is chosen. The definitions of input and output
sequences and traces correspond to those for Mealy machines in Section 2.1.

8.2.2 Observation Table for ONFSMs

To learn ONFSMs, we adapt Definition 2 that defines observation tables.

Definition 7 (Observable Table for ONFSMs) We define an observation table T as triplet
〈Γ, E, T 〉, with

• the prefix-closed set Γ ⊆ (I ×O)∗,

• the suffix-closed set E ⊆ I+, and

• the mapping T : Γ× E → 2O
+

.

Similar to Definition 2, we divide Γ into two distinct subsets ΓS and ΓP , with Γ = ΓS ∪ΓP and
ΓS ∩ ΓP = ∅. For our learning algorithm on ONFSMs, we define ΓS ∈ (I × O)∗. In difference
to Definition 2, we divide also ΓP in two sets with ΓP = ΓPS

∪ ΓP ′, where ΓPS
= ΓS · (I × O),

ΓP ′ = Γ · (I × O) and ΓPS
∩ ΓP ′ = ∅. We write γ ∼= γ′ if two rows γ, γ′ ∈ Γ are equal in T ,

where γ, γ′ are equal, iff ∀e ∈ E : T (γ, e) = T (γ′, e) holds. Another distinction to Definition 2
is the mapping T which maps values of Γ and E to sets of output sequences.
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Figure 8.1: Modified MAT framework for learning abstracted ONFSMs.

8.3 Method

In the following, we introduce our learning algorithm for ONFSMs. Our learning algorithm
follows an L∗-based learning approach to learn abstractions of non-deterministic systems. First,
we provide an overview of the modifications of the MAT framework, followed by a more de-
tailed description of the modifications. Afterwards, we describe the procedure of our learning
algorithm.

8.4 Learning Framwork

Figure 8.1 illustrates our modified MAT framwork. Following the classical MAT framework
structure, we consider two members: a teacher and a learner. The learner queries the teacher
to learn a behavioral model of the SUL. We refer to Section 2.2.2 for further details on learning
reactive systems with the MAT framework.

We extend the MAT by two levels of abstraction: the first-level abstraction and the second-
level abstraction. The first-level abstraction refers to the abstraction of the concrete input
and output alphabet. This kind of alphabet abstraction was first proposed by Cho et al. [38].
Aarts et al. [7] formalize this abstraction technique and extend the MAT framework by a mapper
component. The mapper component translates abstract inputs into concrete inputs and concrete
outputs into abstract outputs. Using the abstracted input and output alphabet, the learner then
learns a behavioral model on a more abstract level.

On top of the first-level abstraction, we propose a second-level abstraction. The learner
only considers the abstracted input and output alphabet. Thus, the observation table contains
abstract inputs and outputs. Our second-level abstraction introduces a second observation table
that represents an abstraction of the other observation table. In the remainder of this chapter,
we refer to the observation table of the second-level abstraction as abstracted observation table,
whereas the observation table of the first-level abstraction is addressed as standard observation
table. Based on the abstracted observation table the learner then explores the state space and
performs output queries in order to create an abstracted hypothesis.
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(a) Non-deterministic finite state machine model-
ing an abstraction of a connection procedure. The
model is not observable non-deterministic.

q0 q1

connect/ack

connect/closed all

connect/ack

connect/closed

(b) Non-deterministic finite state machine, where
the output alphabet is refined so that the state
transitions are observable non-deterministic.

Figure 8.2: Abstracted representation of multi-client connection procedure based on the protocol
presented in Figure 2.1.

8.4.1 First-Level Abstraction

We apply the first-level abstraction to reduce the input and output alphabet. For this purpose,
we follow the approach discussed in Section 2.2.2. In previous chapters, we showed that the
abstraction of the concrete inputs and outputs made learning communication protocols such as
BLE feasible.

For learning, we consider an abstract input alphabet IA and an abstract output alphabet
OA. The mapper translates abstract inputs from the learner to concrete inputs of the input
alphabet I. It receives concrete outputs of the output alphabet O from the SUL and forwards
the abstracted outputs to the learner. Consequently, the learner maintains the observation table
based on the abstracted input and output alphabet. In Definition 7, we replace I by IA and O
by OA.

Finding an appropriate abstraction for a concrete input and output alphabet is not straight-
forward. Aarts et al. [7] define a mapper as well-designed if the learner could learn a de-
terministic Mealy machine. Hence, a too-coarse abstraction by the mapper component can
cause non-deterministic observations. To overcome these non-deterministic observations, the
mapper has to be refined. A different approach is to learn non-deterministic models. The lit-
erature [56, 97, 140] proposes different learning algorithms for ONFSMs. However, the mapper
design must still ensure that an observable non-deterministic model can be learned.

Example 12 (First-Level Abstraction for Multi-client Connection Protocol)
Chapter 2 introduces a publish/subscribe protocol in Example 1. For now, we only consider the
connection procedure of this protocol, but in a multi-client setup. The concrete input alphabet
is I = {connect(id)|id ∈ N}, where id is a unique identifier for each client. Similar to the
input alphabet, we consider the concrete output alphabet O = {ack(id), closed(id)|id ∈ N}. The
protocol defines that every client receives an acknowledge message (ack) when the client connects.
If an already connected client connects again the connection is terminated and the client receives
the output closed.

Figure 8.2a presents an abstracted version of the connection protocol, where the abstract
input alphabet is IA = {connect} and abstract output alphabet is OA = {ack, closed}. The initial
state q0 indicates that no client is connected, hence we only observe ack as output. At least one
client is connected in the state q1. Thus, we either observe ack if another client connects or
closed if an already connected client reconnects. If the last connected client reconnects we enter
again state q0. The non-deterministic finite state machine that is shown in Figure 8.2a is not
observable non-deterministic since we cannot distinguish in state q1 if an observed closed leads
to state q0 or if we remain in state q1.

Figure 8.2b shows an ONFSM that represents the same connection protocol. To provide
observable non-determinism, we change the output of the transition from q1 to q0 with the input
connect to closed all. To learn an ONFSM, we have to change the abstraction of the output
alphabet. We change the abstract output alphabet to OA = {ack, closed, closed all}, where the
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q0 q1 · · · qn

Connect/Ack

Connect/Closed All

Connect/Ack

Connect/Closed

Connect/Ack

Connect/Closed

Figure 8.3: ONFSM of the multi-client connection protocol that would be generated by com-
mon ONFSM learning algorithms [56, 97, 140] using the proposed first-level abstraction of
Example 12. The number of states of the learned model depends on the number of considered
clients.

additional abstract output closed all indicates that all clients have disconnected. We implement
such an abstraction via a stateful mapper that maintains an internal counter for the number of
connected clients.

8.4.2 Second-Level Abstraction

The second-level abstraction aims to further reduce the state space. Even if we learn non-
deterministic systems and design the mapper such that we can learn an ONFSM, we might still
observe the problem that the learned model does not generalize as expected. In particular, when
the mapper performs abstractions based on a counting scheme, the counting behavior is directly
reflected in the state space, since the observations depend on the value of the counter. Hence,
common learning algorithms for ONFSMs from the literature [56, 97, 140] would learn ONFSMs
that model the underlying counter.

Example 13 (Learning with First-Level Abstraction)
Common learning algorithms for ONFSMs [56, 97, 140] learn with the abstraction proposed in
Example 12 an ONFSM as it is shown in Figure 8.3, where the number of states depends on
the number of considered clients. Thus, q1 identifies the state where one client is connected. In
state qn, n clients would be connected.

To generate a more general model, we add a second-level abstraction. The second-level
abstraction aims to abstract outputs by adding another mapping to group abstract observations.
We define the surjective function µ : OA → OA

′
, where OA

′
is an abstraction of the abstract

output alphabet OA. Let µ∗ : OA
+ → OA

′+
be an extension of µ for output sequences, which

returns for an abstract output sequence o0 · . . . · on ∈ OA
+

the second-level abstracted output

sequence µ(o0) · . . . · µ(on) ∈ OA′
+

.

Example 14 (second-level abstraction for Multi-client Connection Protocol)
An abstraction function for the second-level abstraction of the multi-client connection protocol
introduced in Example 12 can be defined as µ : {{ack} → ack, {closed, closed all} → closed}.

For our second-level abstraction, we extend now the learner to consider a second observation
table, which we denote as abstracted observation table. We define the abstracted observation
table as follows:

Definition 8 (Abstracted Observation Table) We define the abstracted observation table
T A′ as a quadruplet 〈Γ, E, TA′ , µ〉, with

• the prefix-closed set Γ ⊆ (IA ×OA)∗,

• the suffix-closed set E ⊆ IA+
,

• the abstraction mapping TA
′
: Γ× E → 2O

A′+
, and
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Table 8.1: Standard observation table of the
multi-client connection protocol of Exam-
ple 12.

Γ\E connect

ΓS
ε ack
(connect, ack) ack, closed all

ΓP
(connect, ack)(connect, ack) ack, closed
(connect, ack)(connect, closed all) ack

Table 8.2: Abstracted observation table of
Table 8.1.

Γ\E connect

ΓS
ε ack
(connect, ack) ack, closed

ΓP
(connect, ack)(connect, ack) ack, closed
(connect, ack)(connect, closed all) ack

• the second level output abstraction function µ : OA → OA
′
.

We write γ ∼=A′ γ′ if two rows γ, γ′ ∈ Γ are equal in T A′, where γ, γ′ are equal, iff ∀e ∈
E : TA

′
(γ, e) = TA

′
(γ′, e)

Example 15 (Abstraction of Observation Table) Table 8.1 shows an intermediate stan-
dard observation table that the learner generates on the first-level abstraction while learning the
multi-client connection protocol, which we introduced in Example 12. The standard observation
table contains in its cells sets of observable outputs. For example, for the row that is identified
by (connect, ack), we can observe for the input connect either the output ack or closed all. Ta-
ble 8.2 shows then the abstracted observation table of Table 8.1 using the abstraction function
µ presented in Example 14. We see that the observations closed and closed all are replaced by
abstracted observation closed. Note that the outputs in the traces of Γ stay unchanged.

Based on the abstracted observation table the learner then queries the SUL and constructs
an abstracted ONFSM using the abstracted and standard observation table. Note that the
transitions in the hypothesis still define inputs and outputs on the first-level abstracted alphabet.
In the next section, we explain how these abstraction levels are used in the definition of a learning
algorithm to learn abstracted ONFSMs.

8.4.3 Learning Algorithm

Algorithm 8 describes the learning procedure for learning abstracted ONFSMs. The learning
algorithm describes an L∗-based learning approach as presented in Algorithm 1, but extends it
by maintaining the abstracted observation table T A′ .

Similar to L∗, our learning algorithm only constructs a hypothesis if the observation table
satisfies certain properties. We check the properties of closedness and consistency on the ab-
stracted observation table. For our learning, we need an additional property called completeness,
for which the standard observation table is additionally required. In the following, we define the
three properties: closedness (1), consistency (2), and completeness (3).

Closedness (1). In principle, the closedness check is similar to the one we defined in Sec-
tion 2.2.2. We define the abstracted table T A′ = 〈Γ = ΓS ∪ΓP , E, T

A′ , µ〉 as closed if ∀γP ∈ ΓP ,
∃γS ∈ ΓS : γP ∼=A′ γS . Note that we check closedness only on the abstracted observation table,
and we do not require that the standard observation table is closed.

To make the abstracted observation table closed, we move every γ ∈ ΓP to ΓS where for
every γ′ ∈ ΓS the equation γ �A′ γ′ holds. Furthermore, we extend for every γ that we moved
to ΓS the set ΓP by γ · (i, o) for every pair (i, o) ∈ (IA ×OA). The pairs (i, o) ∈ (IA ×OA) are
derived for every combination of input i ∈ IA and o ∈ T (γ, i).

Example 16 (Closedness of Abstracted Observation Table) Table 8.3 shows the stan-
dard observation table that is initially created and filled when learning the connection protocol
as presented in Example 14. Table 8.3 represents the corresponding abstracted observation table
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Table 8.3: Observation table of Example 12
after the first output queries.

Γ\E connect
ΓS ε ack
ΓP (connect, ack) ack, closed all

Table 8.4: Abstraction of Table 8.3 using the
mapping defined in Example 12.

Γ\E connect
ΓS ε ack
ΓP (connect, ack) ack, closed

which is abstracted with the abstraction function µ given in Example 14. Based on our defi-
nition of closedness, Table 8.3 is not closed since ΓP identifies a row that is not part of the
rows identified by ΓS. The row identified by (connect, ack) is not part of the rows defined by
ΓS. To make Table 8.3 closed, we need to move the row (connect, ack) to ΓS and extend ΓP by
the rows (connect, ack) · (connect, ack) and (connect, ack) · (connect, closed all). Table 8.1 and
Table 8.2 show the closed and filled version, where Table 8.2 is the abstracted version. Note
that Table 8.1 would not be closed in other learning algorithms for ONFSMs, but for learning
abstracted ONFSMs we are only interested in the closedness of the abstracted observation table
(Table 8.2).

Consistency (2). For the consistency check, we have to extend our definition of consistency
to input/output sequences. We denote the abstracted observation table T A′ = 〈Γ = ΓS ∪
ΓP , E, T

A′ , µ〉 as consistent if for all γ, γ′ ∈ Γ where γ ∼=A′ γ′ holds, there exists no input/output
pair (i, o) ∈ (IA ×OA) such that γ · (i, o) �A′ γ′ · (i, o).

We follow the idea by Niese [133] to make observation tables for learning Mealy machines
consistent. By doing so, we extend E by an input sequence e · i ∈ IA+, where e ∈ E and
i ∈ IA given that for two traces γ, γ′ ∈ Γ and an output o ∈ OA the equations γ ∼=A′ γ′,
γ · (i, o) �A′ γ′ · (i, o) and TA

′
(γ · (i, o), e) 6= TA

′
(γ′ · (i, o), e) hold.

Completeness (3). The completeness check is different from other L∗-based learning algo-
rithms and is required in order to define all transitions in the learned ONFSM. We build the
state space of the hypothesis on the abstracted observation table. To define all transitions, we
might need to extend the abstracted observation table to make the hypothesis complete in the
number of transitions.

For the completeness definition, we require two auxiliary functions: pre(sI), and trace(sI , sO).
Let pre(sI) be a function that takes an input sequence sI ∈ I∗ as input and returns all prefixes
of the sI including sI itself. We define trace(sI , sO) as a function that takes an input sequence
sI ∈ I∗ and an output sequence sO ∈ O∗ of equal length as input and generates an alternating
input/output sequence, i.e., a trace.

To assess whether the abstracted observation table is complete, we take a row identified by
γ ∈ ΓS and select another row γ′ ∈ Γ, where the rows are equal in the abstracted observation
table, i.e., γ ∼=A′ γ′, but not in the standard observation table, i.e., γ � γ′. We then identify
the input sequences e ∈ E such that T (γ, e) 6= T (γ′, e). Furthermore, we select two outputs
sequences sO

+
, s′O

+ ∈ OA
+

where sO
+ ∈ T (γ, e) and s′O

+ ∈ T (γ′, e) and sO
+ 6= s′O

+
but

µ∗(sO
+

) = µ∗(s′O+). The table is complete if ∀t ∈ pre(γ′ · trace(e, s′O
+

)) : t ∈ Γ holds. To make
the table complete, we need to add the missing prefixes pre(γ′ · trace(e, s′O

+
)) to ΓP .

Example 17 (Completeness of Abstracted Observation Table) Table 8.2 shows an in-
termediate version of the abstracted observation table that is closed and consistent. As a last
step, we check if the table is complete. The completeness check also considers the correspond-
ing standard observation table (Table 8.1). First, we determine all equal rows in the abstracted
observation table (Table 8.2) and then check if the rows are not equal in Table 8.1. The rows
(connect, ack) and (connect, ack) · (connect, ack) are equal in Table 8.2, but they are not in Ta-
ble 8.1. Hence, we have to take the entry in E that shows the difference in Table 8.1, which for
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Table 8.5: Final observation table of the
connection protocol of Example 12. The in-
put connect is abbreviated by conn.

Γ\E connect

ΓS
ε ack
(conn, ack) ack, closed all

ΓP

(conn, ack)(conn, ack) ack, closed
(conn, ack)(conn, closed all) ack
(conn, ack)(conn, ack)(conn, closed) ack, closed all

Table 8.6: Final abstracted observation ta-
ble generated from Table 8.5 The input
connect is abbreviated by conn.

Γ\E connect

ΓS
ε ack
(conn, ack) ack, closed

ΓP

(conn, ack)(conn, ack) ack, closed
(conn, ack)(conn, closed all) ack
(conn, ack)(conn, ack)(conn, closed) ack, closed

this example can only be connect. As a next step, we check if all prefixes γ · trace(i+, o+) are
included in Γ, where γ is one of the selected row indices and i+ is the input sequence from the E
set and o+ is one output sequence in T (γ, i). For this example, Table 8.2 is not complete since
the prefix (connect, ack) · (connect, ack) · (connect, closed) is not included in Γ. To make the table
complete, we add this prefix to ΓP . Table 8.6 presents the complete abstracted observation table.

Based on these definitions, we define our learning algorithm for abstracted non-deterministic
ONFSMs. Algorithm 8 describes the learning procedure. The algorithm takes as input the
abstract input alphabet IA, the abstraction function µ for the second-level abstraction, and a
black-box access to the SUL to query it. The algorithm returns an abstracted ONFSM M.

In Line 3, the algorithm starts by initializing the observation table, where ΓS = ε and
E = IA. From Line 3 to Line 28, we perform the iterative learning procedure, where the
standard observation table is filled by performing output queries. We then apply the second-level
abstraction function µ to generate the abstracted observation table. Based on the observation
tables, we then create a hypothesis and check if it conforms to the SUL. This procedure is
repeated until we find a conforming hypothesis.

In Line 4, we fill the standard observation table. For this, we fill all cells in the table, i.e. we
define the mappings in T . Furthermore, we extend ΓP such that all rows in ΓS have in ΓP an
extension with every input/output combination. Line 5 creates the abstracted observation table
from the standard observation table. The function abstract table(〈Γ, E, T 〉, µ) takes as input
the observation 〈Γ, E, T 〉 and the abstraction function µ to generate the abstracted observation
table 〈Γ, E, TA′ , µ〉, where the first level abstracted outputs in T are replaced by second level
abstracted outputs defined by µ in order to create the mapping TA

′
. Note that the observation

tables always share the same sets Γ and E.

Starting at Line 6, we then check if the abstracted observation table is closed, complete and
consistent. From Line 7 to Line 21, we then follow the same pattern for every property. We
check if the respective property holds, i.e., if the table is closed (Line 7), complete (Line 12), and
consistent (Line 17). If one of the properties does not hold we always follow the same pattern:
(1) we fix the table such that the property is satisfied, (2) fill the observation table, and (3)
generate the abstracted observation table. If this is done for every property, we return to Line 6
and check if all properties hold. This procedure is repeated until all properties hold.

In Line 23, we then construct the hypothesis M based on both observation tables. We
describe the hypothesis construction for creating an abstracted ONFSM later in this section.
Line 24 performs an equivalence query, which returns a pair (verdict , cex ), where verdict indicates
if M conforms to the SUL, and cex contains an input sequence that reveals the behavioral
difference between M and the SUL. The Boolean variable verdict evaluates to true if M
conforms to the SUL, otherwise it evaluates to false. We will later explain how the equivalence
check can be implemented for learning abstracted ONFSMs.

In the case that the verdict equals false, we update the table by the provided counterexample
in Line 26. For the counterexample processing, we distinguish two different types of counterex-
amples. The first type reveals a missing transition for an input in a state in which an output of
the same equivalence class already exists. In this case, we add all prefixes of the trace that leads
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Algorithm 8 Learning algorithm using an abstracted observation table

Input: input alphabet IA, equivalence class mapping µ, black-box access to sul
Output: ONFSM M

1: 〈Γ, E, T 〉 ← init table(IA)
2: verdict← ⊥
3: do
4: 〈Γ, E, T 〉 ← fill table(〈Γ, E, T 〉,SUL)
5: T A′ ← abstract table(〈Γ, E, T 〉, µ)
6: while ¬(closed(T A′) ∧ consistent(T A′) ∧ complete(T A′ , 〈Γ, E, T 〉)) do
7: if ¬closed(T A′) then
8: Γ← make closed(T A′)
9: 〈Γ, E, T 〉 ← fill table(〈Γ, E, T 〉,SUL)

10: T A′ ← abstract table(〈Γ, E, T 〉, µ)
11: end if
12: if ¬complete(T A′ , 〈Γ, E, T 〉) then
13: Γ← complete table(T A′ , 〈Γ, E, T 〉)
14: 〈Γ, E, T 〉 ← fill table(〈Γ, E, T 〉,SUL)
15: T A′ ← abstract table(〈Γ, E, T 〉, µ)
16: end if
17: if ¬consistent(T A′) then
18: E ← make consistent(T A′)
19: 〈Γ, E, T 〉 ← fill table(〈Γ, E, T 〉,SUL)
20: T A′ ← abstract table(〈Γ, E, T 〉, µ)
21: end if
22: end while
23: M← create hypothesis(〈Γ, E, T 〉, T A′ , IA)
24: verdict , cex ← equivalence query(M,SUL)
25: if ¬verdict then
26: 〈Γ, E, T 〉 ← update table(〈Γ, E, T 〉, cex )
27: end if
28: while ¬verdict
29: return M

to this state to the set ΓP . If the provided counterexample does not belong to the first type, we
need to add new states. In this case, we follow the approach of El-Fakih et al. [56] and add all
suffixes of the provided counterexample to E. Based on the updated observation table, we start
a new iteration to fill the observation tables and construct a new hypothesis. This procedure is
repeated until a conforming ONFSM could be learned.

Hypothesis creation. Algorithm 9 describes the procedure to generate an abstracted ONFSM
from the observation table T and the abstracted observation table T A′ . The algorithm returns
the created ONFSM M. The generation of M starts by the initialization of its states in Line 1
and Line 2. For keeping the construction simple, we identify the states via their access sequence
provided in the set ΓS . After the hypothesis is constructed, we can map these sequences to
numeric state identifiers.

For the construction of the ONFSM, we traverse through all states in ΓS . In Line 4, we select
all rows ΓγS that are in the abstracted observation table equal to the currently considered state.
We then traverse through the rows γ ∈ ΓγS and add for each input in the input alphabet i ∈ IA
all transitions for all outputs that are defined in the mapping T (γ, i) of the observation table T .
In Line 8, we concat the current input/output pair (i, o) ∈ (IA×OA) to the row γ in order to get
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Algorithm 9 Creation of an ONFSM create hypothesis(T , T A′ , IA)

Input: observation table T = 〈Γ = ΓS ∪ ΓP , E, T 〉, abstracted observation table T A′ =
〈Γ, E, TA′ , µ〉, abstract input alphabet IA

Output: ONFSM M = 〈Q, q0, I
A, OA, δ〉

1: q0 ← ε
2: Q← ΓS
3: for all γS ∈ ΓS do
4: QγS ← {γ|γ ∈ Γ ∧ γ ∼=A′ γS}
5: for all γ ∈ QγS do
6: for all i ∈ IA do
7: for all o ∈ T (γ, i) do
8: γ′ ← γ · (i, o)
9: if γ′ ∈ Γ then

10: δ(γS , i, o)← γ′S , where γ′S ∈ ΓS ∧ γ′S ∼=A′ γ′
11: end if
12: end for
13: end for
14: end for
15: end for
16: return M

the target state γ′. We then check if γ′ ∈ Γ holds. For a complete abstracted observation table,
this condition should be satisfied if no other equal row defines this behavior for the respective
input/output pair. Line 10 then defines the state transition in the state transition function δ.
The source state is the currently considered state γS ∈ ΓS , the transition is labelled with the
input/output pair (i, o) and the target state γ′S , where γ′S is a row in ΓS which is equal to the
row γ′ in the abstracted observation table T A, i.e., γ′S

∼=A′ γ′ holds. Based on this approach,
we can define all state transitions of the ONFSM.

The function returns the constructed ONFSMM = 〈Q, q0, I
A, OA, δ〉, where the abstracted

input alphabet IA is given and the output alphabet can be directly derived from the collected
observations.

Example 18 (Hypothesis Creation) The abstracted observation table, Table 8.6, is closed,
complete and consistent. Therefore, we can create an ONFSM. The set ΓS defines two states:
q0 = ε, and q1 = (connect, ack). To construct the transitions, we look up the target states in
the abstracted observation table, and the corresponding output labels in the standard observation
table. This leads to the following transitions: δ(q0, connect, ack) = q1, δ(q1, connect, ack) = q1,
δ(q1, connect, closed) = q1, and δ(q1, connect, closed all) = q0. Using this mapping, we construct
the ONFSM that is depicted in Figure 8.2b.

Conformance testing for abstracted ONFSMs. For active automata learning based on
the MAT framework, we require an equivalence oracle that tells the learner if the conjectured
hypothesis is equivalent to the behavior of the SUL. Similar to learning Mealy machines, ONFSM
learning techniques aim to learn an ONFSM M that fulfills that L(M) = L(MSUL), where the
language L(M) includes all the traces that can be defined by M, and MSUL is the unknown
ONFSM representation of the SUL. Since we learn an ONFSM that represents a more abstract
solution we do not test for trace equivalence. Instead, we test for trace inclusion since the
learned hypothesis represents an underspecification of an implementation. Therefore, we define
the conformance relation for learning as follows:

L(MSUL) ⊆ L(M). (8.1)
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We say that M conforms to MSUL if all traces of MSUL are included in the set of traces M.
A counterexample represents a trace that is not included in L(M). In other words, this means
that MSUL produces an output sequence for an input sequence that cannot be observed when
executing the same input sequence onM. In practice, we cannot assume that we have a perfect
equivalence oracle that returns all traces of a black-box SUL that are not included in the provided
hypothesis. Hence, we follow a similar approach as for deterministic systems and approximate
trace inclusion via conformance testing techniques. Our test suite consists of a finite set of input
sequences. A test case passes if all output sequences that are generated by MSUL are also
observable when executing the same input sequence on M. Thus, a test case fails if MSUL

produces an output sequence that cannot be observed on M. Note that the conformance check
compares traces that are abstracted on the first-level abstraction.

8.5 Evaluation

We evaluate our proposed learning algorithm for learning real communication protocol imple-
mentations in a multi-client setup. The following section presents adaptions to our presented
learning algorithm to make it feasible in practice. Afterwards, we provide the experimental
setup in which we conducted the case study followed by a discussion of our case study results.
Additionally, the discussion includes a comparison to a classic learning setup.

8.5.1 Practical Considerations

Learning of ONFSMs is challenging due to the underlying non-deterministic behavior of the
SUL. Hence, the execution of one input sequence yields different output sequences. Learning
algorithms for ONFSMs [56, 97, 140] assume that the all-weather condition [120] holds. Thus,
the algorithms require that all query outputs can be observed after repeating an output query a
finite number of times. In practice, such an assumption implies that a large number of queries
must be executed to learn non-deterministic systems. To make learning feasible in practice, we
adapt our presented learning algorithm. We propose the following two adaptions: (1) adaptive
repetitions of queries, and (2) shrinking of the observation table.

Adaptive repetitions of queries (1). Similar to other learning algorithms for ONFSMs,
we repeat each query a finite number of times, where the number of repetitions is defined by
a constant nq ∈ N. The number of repetitions depends on the underlying SUL and on the
considered first-level abstraction. We propose to align nq to the proportion between abstract
inputs to concrete inputs. For example, considering the running example of the previous section
on a multi-client connection protocol, we can align nq to the number of connected clients.

In addition, some systems might behave only non-deterministic for a certain subset of inputs,
whereas other inputs show deterministic behavior. Hence, for deterministic inputs, it does not
make sense to repeat them. In this case, we assign each entry in the observation table an
observation score s ∈ R≥0 that indicates how often the output changes. We define s ∈ [0, 1],
where 0 indicates the highest chance to observe a new output on the next execution, and 1
indicates that the chance to observe a new output is very low. We use s to steer the number of
repetitions of a query, where s = 1 indicates that the query should not be repeated another time.
During learning, we adapt s by the constants sinc, sdec ∈ R≥0, where sinc increases the value of s
and sdec decreases the value of s. These values allow us to adapt the number of repeated queries
according to the amount of non-deterministic behavior observable on the SUL.

Instead of executing all repetitions of a query at once, we continuously repeat the queries
according to our adaptive query repetition function that we introduced earlier. Therefore, each
time we fill the table, we repeat each query that has an observation score of less than one nq
times and afterwards adapt the score s.
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Shrinking of the observation tables (2). Using our adaptive query approach implies that
entries of the observation table might change during the learning procedure. The update of the
entries in the table has the consequence that rows in the table might get similar to others or
vice-versa differ from previously similar states. In principle, this does not reflect a problem for
our proposed learning approach, but we might perform unnecessary queries. We aim to avoid
any entry in the table that is not necessary to model an ONFSM since every entry requires
several query repetitions. To keep the observation table as small as possible, we shrink the table
if possible. Shrinking means that we remove unnecessary rows from the table that do not show
additional behavior. We shrink the table by removing similar rows defined by ΓS under the
consideration that ΓS remains prefix-closed. If we identify two equal rows, i.e., γ, γ′ ∈ ΓS , where
γ ∼= γ′, we remove the row with the longer trace in ΓS . Let γ be the trace that identifies the
row that should be removed, then |γ| ≥ |γ′|. If we remove the row that is indexed by γ, we
also check if we can remove any rows that represent prefixes of γ in ΓS and if ΓP contains any
extensions γ · (i, o) with i ∈ I and o ∈ O of the removed row that are not further required.

Note that these adaptions to weaken the all-weather assumption are not only applicable in
our learning technique for learning abstracted ONFSM. They can also be directly transferred
to other ONFSM learning approaches.

8.5.2 Case Study Subjects

For the following case study, we base our evaluation on five different MQTT broker implementa-
tions. We provide a more detailed description of the MQTT protocol in Section 2.3.1. Tappler et
al. [170] present that learning MQTT broker implementations that interact with two clients using
standard learning algorithms is feasible but the size of the input alphabet increases noticeably.
In this case study, we present results on learning abstractions of MQTT broker implementations
in a multi-client setup and compare them to the learning results achieved by learning algorithms
of state-of-the-art learning libraries.

We consider the following five MQTT broker implementations:

• Eclipse Mosquitto 1.6.81,

• ejabberd 20.3,2

• EMQ X v4.0.03,

• HiveMQ 2020.24, and

• VerneMQ 1.10.05,

All of the considered MQTT brokers implement the MQTT v5.0 standard [22]. To avoid any
external influences, we installed all brokers locally and performed the communication via a local
network.

For our case study, we consider that a broker communicates with five different MQTT clients
that can connect and disconnect, publish, subscribe, and unsubscribe to topics. The MQTT
client implementation is based on the client proposed by Tappler et al. [170].

8.5.3 Learning Setup

The considered learning setup considers four components: (1) the learning algorithm, (2) the
mapper, (3) the learning interface, and (4) the system under learning.

1https://mosquitto.org/
2https://www.ejabberd.im/
3https://github.com/emqx/emqx
4https://github.com/hivemq/hivemq-community-edition
5https://github.com/vernemq/vernemq
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Learning algorithm (1). Learning is based on our proposed learning algorithm for learning
abstracted ONFSMs. For the first-level abstraction, we consider the abstract input alphabet
IA = {Connect,Disconnect, Subscribe,Unsubscribe,Publish}. The abstracted inputs are trans-
lated to the following concrete alphabet I = {Connect(client),Disconnect(client),
Subscribe(client , topic),Unsubscribe(client , topic),Publish(client , topic,message))}, where
client always identifies the client who sends the packet, topic is a concrete topic name on which
clients publish, subscribe or unsubscribe, and message is a concrete messages clients publish.
The concretization for client is based on a random selection from the corresponding pool of
clients. The concretization of topic is aligned to currently considered topics and message is
randomly generated.

The concrete output is the set of received packets of every client after a client sends a packet.
The translation to abstract outputs is straightforward by the packet name, where all distinct
packets are concatenated. However, to enable the learning of an ONFSM, we distinguish between
the states where no client is connected and no client is subscribed. For these cases, we extend
the abstract output alphabet by the outputs Closed all, Unsuback all and Closed Unsuback all,
where Closed all indicates that all clients are disconnected, Unsuback all that all clients are
unsubscribed and Closed Unsuback all that the last subscribed client disconnects. Hence,
the abstracted output alphabet is OA = {Connack,Puback,Suback,Unsuback,Puback Publish,
Closed all,Unsuback all}.

The learning algorithm component includes the second-level abstraction. For learning the
MQTT protocol, we define the second-level abstraction function as follows:

µ = {{Closed,Closed all,Closed Unsuback all} → Closed,

{Unsuback,Unsuback all} → Unsuback,

{Connack} → Connack,

{Puback} → Puback,

{Suback} → Suback,

{Puback Publish} → Puback Publish}.

(8.2)

For the repetition of queries, we set nq = 10 and we initialize s = 0.9, where sinc = 0.2 and
sdec = 0.1. Our conformance testing technique is based on 2 000 random walks, with a stop
probability of 0.25 for each trace.

Mapper (2). The purpose of the mapper component is to translate inputs from the first-
level abstraction into concrete inputs that can be executed on the SUL. The same is done
for received concrete outputs which the mapper receives directly from the different clients.
The mapper then translates these concrete outputs to abstract outputs according to the first-
level abstraction. To perform abstractions such that an ONFSM can be learned, the mapper
needs to be stateful in the sense that it keeps track of the number of connected and subscribed
clients. The mapper concretizes matching topic names of the subscribe, unsubscribe and publish
messages. Furthermore, the mapper implements a cache that saves concretizations of abstract
input sequences to reproduce the corresponding output sequence. This especially helps when
creating access sequences to specific states.

Learning interface (3). The interface is responsible for the communication with the MQTT
broker. In our setup, we consider five equal MQTT clients that interact with the broker. In
difference to the setup of Tappler et al. [170], we do not assign specific roles to the clients such as
publisher or subscriber. The assignment of such roles decreases the state space. For our setup,
we define every MQTT command for every client. The mapper assigns an MQTT command to
one client at a time that should be forwarded to the MQTT broker. The MQTT broker then
responds to this request with a corresponding response. Note that the broker may respond to
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Figure 8.4: Learned abstracted ONFSM that represents the behavior of an MQTT broker that
interacts with five clients. Some inputs and outputs have been grouped by the symbol ‘+’.

Table 8.7: Learning setup and results of our case study on MQTT brokers.

Broker ejabberd EMQ X HiveMq
Eclipse

Mosquitto
VerneMQ

Timeout 100 50 100 50 50
# Output queries 18 315 18 375 15 950 13 975 14 800
# Equivalence checks 1 1 1 1 1
Runtime (h) 11.28 5.48 9.04 3.98 4.30

more than one client. For example, consider that a client sends a publish message, then apart
from the response that the publish message is accepted Puback the broker also forwards to all
clients that are subscribed to the topic of the publish message, which is then summarized by a
Publish output.

System under learning (4). The MQTT broker implementation represents our SUL. We
expect that the broker responds within a certain timeout.

8.5.4 Experimental Setup

We implemented our learning algorithm in Scala 2.12. We used Scala since functional program-
ming was convenient to check the properties of the observation tables and it allows us to use
Java libraries such as the MQTT client implementation provided by Tappler et al. [170].

All experiments were executed on an Apple MacBook Pro 2019 with an Intel Quad-Core i5
running at 2.4 GHz and with 8 GB memory.

8.5.5 Results

The following section presents the results of our evaluation on learning an abstracted ONFSM
of five different MQTT brokers. We could learn all five MQTT broker implementations. The
learned model is shown in Figure 8.4, where the same model was learned for all five implemen-
tations.

The learned ONFSM depicts an abstraction of the MQTT broker behavior which interacts
with five clients. State q0 represents the state where no client is connected. After one client is
connected, we traverse to state q1. State q1 describes a state where clients are connected, but
none of the clients is subscribed. Thus, if one connected client subscribes to a topic, state q2 is
entered. In state q2, at least one client is connected and subscribed. If all clients unsubscribe
but remain connected, the first-level abstraction translates the concrete output to Unsuback all.
Furthermore, if only one client is subscribed and that client also disconnects, none of the clients
are subscribed, which is indicated by the output Closed Unsuback all.

Table 8.7 presents the learning metrics. The metrics include the considered timeout to wait
for messages, the number of performed output queries, the number of equivalence queries and
the runtime in hours (h). We adjusted the timeouts for ejabberd and HiveMQ to learn the
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same model for all brokers. With the original timeout of 50, messages may arrive delayed from
these brokers. In theory, we could learn models that reflect this non-deterministic behavior, but
for this case study our target was to learn the same model for all MQTT broker implementations.

Every MQTT broker could be learned within one learning round, i.e., one equivalence check
was performed. Our active learning technique executed between 13 975 and 18 375 queries on
the SULs to learn the model depicted in Figure 8.4. The runtime ranged from 3.98 h to 11.28 h,
whereby an increased timeout appears to have a direct influence on the runtime.

Learning a three-state model in at least three hours might give the impression that the
learning process is a bit excessive. To provide a comparison, we also applied the same learning
setup to a state-of-the-art learning library. We used the Java library LearnLib [90], to learn
a behavioral model of the five considered MQTT broker implementations interacting with five
clients. To enable learning of a deterministic automaton, we have to adapt the abstracted input
and output alphabet such that deterministic behavior can be modeled. To do so, we add a
representation for each input and output for each client. For this experiment, our learning
setup applies L∗ for learning Mealy machines with the improvements proposed by Rivest and
Schapire [156]. To achieve a fair comparison, we again apply an equivalence oracle approximated
by conformance testing, where the test suite is generated via random walks, using a similar setup
to our presented learning setup.

With this LearnLib setup, we could only learn a Mealy machine that represents the Eclipse
Mosquitto broker, all other devices behaved non-deterministically. Learning with a timeout of 50
took 58.29 h, where the learned Mealy machine has 243 states. Active learning required 151 900
output queries where one equivalence query was performed. Compared to our learned model, we
observe how the second-level abstraction helps to keep the model concise. In practice, a model
with 243 states might be harder to interpret, especially by humans.

8.6 AALpy Integration

To make our proposed learning algorithm for ONFSMs publicly better accessible, we integrated
the algorithm into the Python automata library AALpy. The Python implementation follows
the presented learning algorithm. However, it offers other practical approaches to weaken the
all-weather assumption. The practical optimizations were presented in the Bachelor’s Thesis of
Windisch [193].

Similar to our approach, the table can be shrunken during learning to avoid unnecessary
queries. The implementation of the table shrinking technique follows the concept presented in
Section 8.5.1.

The adaptive repetition of queries is also implemented but slightly differently. The imple-
mentation in AALpy considers a tree-based caching structure. The tree-based cache is similar
to a prefix-tree acceptor (PTA) which is extended by every observed trace. Each performed
query is looked up in the cache. Each input/output pair in the cache is repeated a certain
number of times. If the maximum number of samples is reached, the output is directly taken
from the cache. Based on the observations in the tree, we then update the entries in the table.
The advantage of this technique is that it avoids redundancy in the repetition of queries. To
fill an observation table, many queries represent a prefix of other queries. Using the underlying
tree structure, we can avoid repeating a trace a finite number of times that represents a prefix
of another trace that also needs to be repeated. The results of Windisch [193] show that this
data structure together with table-shrinking could speed up learning by a factor of 11.

These optimizations help to improve the runtime of learning ONFSMs, but also improve
the number of correctly learned models. If we weaken the all-weather assumption, rows in
the table might be incomplete in the sense that they miss observations. This could either
lead to more or fewer states than required to model the minimal ground truth automaton of
the SUL. By shrinking the table, we reduce the risk of missing observations. The results
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of Windisch [193] underline this statement, by showing that the number of correctly learned
automata is substantially higher than without these optimizations. For example, for 50 randomly
generated ONFSMs with 15 states, 5 inputs and 5 outputs, where every query was repeated 30
times, the algorithm without the optimizations learned correctly only once, whereas with our
optimizations we managed to learn the correct automaton for all examples. The trend was
similar for the other experimental setups. For further details on these optimizations and their
achieved improvements, we refer to the Bachelor’s thesis [193].

8.7 Conclusion

In this chapter, we presented a solution to learn non-deterministic systems in practice. To
this end, we presented a learning algorithm that learns an abstraction of a non-deterministic
system. The presented learning framework follows the L∗ algorithm, but extends the MAT
framework with an additional level of abstraction. The additional abstraction layer abstracts
the observations in the observation table and allows us to learn an abstracted ONFSM. In order
to apply the presented learning algorithm for abstracted ONFSMs in practice, we introduced
several approaches that allow us to weaken the assumption that all possible behaviors must
be directly observed. We demonstrated the feasibility of our learning algorithm by evaluating
the learning of behavioral models of MQTT brokers in a multi-client setup. Using our proposed
technique, we were able to learn a concise representation. A comparison with a classical learning
setup for learning a deterministic system showed that the learned model had 81 times more states
than our abstracted model. We have provided examples showing how the abstraction can be
performed. However, we did not provide a solution to automate the definition of abstraction
mappings and leave this open for future work.

(RQ 1) What are the challenges of learning behavioral models in networked
systems?

We investigated how well automata learning performed considering a multi-client setup.
The challenge in a multi-client setup was that the state space increased with each addi-
tionally considered client. To make learning feasible, we were required to abstract the
input and output alphabet. However, the abstraction had to be chosen such that a de-
terministic model could be learned, which still resulted in large behavioral models.

(RQ 2.2) How to improve automata learning to make it feasible for different
challenges in networked environments?

We presented a novel learning algorithm that generates abstracted ONFSMs. Our al-
gorithm extended the classical active learning framework and introduced an additional
layer of abstraction to group observations. Using this technique, we could learn behavioral
models of MQTT brokers interacting with multiple clients. Furthermore, we discussed
adaptations to learning algorithms for non-deterministic systems such that not all obser-
vations needed to be observed at once, but also to avoid redundant query executions.
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Chapter 9

Learning-based Fuzzing

Declaration of Resources

This chapter presents different methods that are presented in two papers and parts of the
Master’s Thesis by Benjamin Wunderling. Section 9.2.1 is based on the paper “Learning-
Based Fuzzing of IoT Message Brokers” [11]. Section 9.2.2 describes the methodology
that is presented in the paper “Stateful Black-Box Fuzzing of Bluetooth Devices Using
Automata Learning” [148]. Sections 9.2.3, 9.2.4, and 9.2.5 are based on the Master’s
Thesis of Benjamin Wunderling with the title “Model Learning and Fuzzing of the IPsec-
IKEv1 VPN Protocol” which is co-supervised by the author of this thesis.

This chapter introduces the concept of learning-based fuzzing. Learning-based fuzzing is a
black-box fuzzing method and can be defined in a two-step procedure. First, we use automata
learning to create a behavioral model. Second, we apply model-based fuzzing using the previ-
ously learned model. This chapter opens with an introduction to fuzz testing in Section 9.1.
Afterwards, Section 9.2 presents the general methodology of learning-based fuzzing followed by
different concrete concepts to implement this technique. We summarize this chapter in Sec-
tion 9.3. In Chapter 10, we then show the effectiveness of learning-based fuzzing in case studies
on different communication protocols.

9.1 Background

9.1.1 Fuzzing

Fuzz-testing or fuzzing is a testing technique that executes a large amount of randomly generated
inputs on the SUT to reveal unexpected behavior. The origin of fuzzing dates back to the work
of Miller et al. [119]. In their work, they implemented a tool called fuzz which generated random
input strings for testing UNIX utilities. Their tool was able to reveal many crash scenarios on
the tested applications. Today, fuzzing is a popular tool for testing systems due to its ease of
use and high success rate.

According to Godefroid [71], today’s fuzzing tools often aim to reveal security vulnerabilities.
In this work, we also refer to this definition. Thus, we use fuzzing to test security and reliability
issues. However, fuzzing techniques can also be used to support other testing techniques such
as search-based testing [175, 203].

Figure 9.1 illustrates a standard fuzzing framework that consists of four components: (1)
the test-case generator, (2) the test executor, (3) the monitor, and (4) the SUT. The test-case
generator (1) is often referred to as the fuzzer. The fuzzer generates a test suite using random
input-generation techniques. Depending on the fuzzing approach, the test case generator uses
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Figure 9.1: A standard fuzzing framework consists of four components.

information about the underlying input structure and/or a given input as a seed for generating
the test suite. This test suite is then executed on the SUT by a test executor (2). The executor
implements an interface to the SUT and enables also the execution of invalid and unexpected
inputs. To observe unexpected behavior, fuzzing requires some kind of monitor (3) that logs the
behavior of the SUT, e.g., system crashes. The fourth component is the SUT (4) which is the
fuzzing target. Godefroid [71] defines that any system can be fuzzed that parses a given input.
To test the effectiveness of fuzzing, we also require to observe the behavior of the SUT of a given
input, at least to some extent.

In the literature [106], fuzzing is frequently categorized based on the level of accessibility of
the SUT. We define three categories: white box, black box, and gray box.

In white-box fuzzing, we have access to the source code of the SUT. White-box fuzzers such
as SAGE [72] use program analysis techniques such as symbolic execution, to automatically
generate test cases based on code coverage metrics. Fuzzers such as SAGE use constraint
solving to access any constrained path in a program. These constraints might be complex to
solve. Furthermore, the requirement of having access to the source code, especially considering
environments that rely on third-party components, limits the feasibility of white-box fuzzing to
open-source products or in-house development projects.

In black-box fuzzing, we do not have insights into the internal behavior of the system.
We can only execute inputs and observe the corresponding outputs. Early results in fuzzing
by Miller et al [119] show that the execution of random inputs is already sufficient to detect
software bugs. However, black-box fuzzing becomes challenging if the SUT requests complex
input structures. An example of a more complex input would be communication protocol packets
with many different fields that must be arranged in a certain order. To overcome this problem,
black-box fuzzers like SNOOZE [23] or boofuzz [142] use a formal definition of the language to
generate inputs. This method is especially well suited for fuzzing network protocols, since the
packet structure can be defined by a context-free grammar. However, it remains a problem to
determine whether black-box fuzzing is exhaustive enough.

Gray-box fuzzers can be classified between white-box and black-box fuzzers. In gray-box
fuzzing, access to the code is not provided, but gray-box fuzzers use code instrumentation to
guide the test case generation. Böhme et al. [28] define gray-box fuzzing as a state-of-the-art
security testing technique. They argue the success of gray-box fuzzing by the results achieved
by tools like AFL [201], and its variations like AFL++ [60] or AFLGo [28]. These fuzzing tools
successfully detected bugs in all kinds of systems including Mozilla Firefox, OpenSSL, and the
iOS kernel.

Furthermore, fuzz-testing techniques can also be classified based on their input generation
technique. The literature distinguishes between mutative and generative input generation tech-
niques. Some work mainly defines these techniques as subclassification of black-box fuzzing [48],
whereas others [116] assign these categories independent of the access level of the SUT. Mu-
tative fuzzers randomly modify a given input using mutation operators like bit-flipping. The
advantage of mutative fuzzers is that they can be straightforwardly applied without requiring
any knowledge about the SUT [48]. However, it can be particularly difficult to explore in-depth
behavior by simply changing the existing inputs. Generative fuzzers use given input structures
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to generate inputs for fuzzing. In contrast to simple mutative fuzzing, generative fuzzers can
test specific aspects of protocols. However, the definition of such an input structure might be
laborious.

9.1.2 Protocol State Fuzzing

Protocol state fuzzing is a black-box fuzzing technique that fuzzes communication protocols via
automata learning. In general, the technique follows a learning-based testing approach, where
active automata learning is used to test the system. In active learning, a large number of inputs
are executed on the SUT to learn a behavioral model. The goal is to reveal unexpected behavior
by learning a model, where the active learning algorithm executes possible unexpected inputs for
the currently investigated state in order to explore the state space. After learning, the learned
model is analyzed for any unexpected behavior. For example, if there exist paths to circumvent
mandatory steps.

Protocol state fuzzing has been successfully applied to learn security-critical protocols such
as TLS [50], parts of SSL/TLS [163], DTLS [63] and OpenVPN [47]. The conducted case studies
revealed security issues such as the threat of violating integrity and confidentiality. In addition,
some of our learned models show that there exist paths to bypass authentication steps. In
addition, Daniel et al. [47] stress that the learned models help to understand the implementation
and add additional information to often sparse documentation and specifications.

The protocol state fuzzing approaches [47, 50, 63] follow the same learning setup as presented
in Chapter 4 and Chapter 5. In general, a model is learned using an abstracted input alphabet. A
mapper component is then used to translate inputs, where the mapper is most of the time stateful
to store variables of the current connection. The learned model is then manually analyzed for
any security or specification violations.

9.2 Method

We define learning-based fuzzing as a fuzz-testing method that combines automata learning
and fuzzing techniques. In contrast to protocol state fuzzing, learning-based fuzzing techniques
first learn a behavioral model and then model-based fuzzing techniques are applied to test the
SUT. We see in the case studies on BLE and VPN that learning requires a fault-tolerant learning
setup, where unusual behavior might occur due to lost, retransmitted or delayed packets. Hence,
fuzzing the system during learning with a large number of inputs can be a tedious process. To
overcome this issue, we propose a different fuzzing technique, which is also based on automata
learning, but in this case, fuzzing is performed after learning.

Learning-based fuzzing can be described in a two-step procedure, where we first learn the
behavioral model using automata learning techniques and then use model-based fuzzing tech-
niques to fuzz the SUT. Figure 9.1 provides an overview of the general learning-based fuzzing
framework. The framework includes a learning and a fuzzing component. Furthermore, we
consider a system interface that is used by the learning and fuzzing component. The system
interface provides access to the SUT by an adapter component. The adapter enables commu-
nication between the mappers and the SUT. For example, for learning-based fuzzing of a BLE
device, the adapter includes another BLE device that sends packets to the SUT and receives the
corresponding responses.

The learning-based fuzzing procedure first starts by learning a behavioral model of the SUT.
The learning component is similar to the learning setups used in the chapters 4 and 5. The model
is learned using an abstracted input alphabet. This makes learning feasible in a reasonable
amount of time. Later, we show that the abstraction is useful for further testing purposes.
The abstraction for learning is conducted by a mapper component as described in Chapter 3.
For learning-based fuzzing, we mainly consider active learning algorithms, since it is useful for
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fuzzing purposes to have a model defined for each input in each state. In practice, passive
algorithms that learn from a given sample, such as log files, are likely to not provide input
completeness.

The learned abstract model serves as input for the second step in the learning-based fuzzing
procedure. The fuzzing component implements a conformance testing technique as introduced
in Section 2.2.2. In conformance testing, we test if an implementation I, which is represented by
the SUT in our setup, conforms to the given model H. However, the goal of fuzzing is to violate
the conformance relation given in Equation 2.1. By applying fuzzing techniques, we create a
test suite TCfuzz such that

I imp H ⇔ ∀ tc ∈ TC fuzz : I passes tc. (9.1)

does not hold. In the remainder of this chapter, we discuss different techniques to generate
such a test suite.

We use the learned model to generate a fuzzing test suite. Since the learned model is on
a more abstract level than the SUT, we again require a mapper component that translates
abstract inputs to concrete inputs. To fuzz the SUT, we also include unexpected inputs in the
fuzzing test suite. Hence, the fuzzing mapper differs from the mapper used in learning by the
applied concretization function. The difference is that the generation of concrete inputs not only
includes standard values or a specific range of values but also unexpected values.

In the case that we find a counterexample to the conformance relation of Equation 9.1, the
learning-based fuzzing framework reports the found counterexample and performs an additional
analysis on the provided counterexample. The counterexample analysis could either be a manual
process or automatically performed.

One advantage of this fuzzing framework is that model learning and fuzzing are separated.
This is especially useful in real-world scenarios since fuzzing during learning would require
advanced mechanisms to deal with unexpected behavior. For example, if the fuzzed input
crashes the SUT, mechanisms are required to recover the learning procedure.

Another advantage of this two-step learning-based fuzzing procedure is that it is not required
that the SUL and SUT are the same system. For example, the SUL might represent a reference
implementation, whereas the SUL can be any other implementation that can be accessed via
the same abstract input alphabet. As an additional advantage, learning-based fuzzing is also
applicable if only one system can be learned. The model can then be reused for fuzzing other
implementations.

9.2.1 Grammar-based Fuzzing

Grammar-based fuzzers generate inputs using an underlying grammar. A grammar includes
a set of rules that define a language, where every word that conforms to rules is part of the
language. Grammars can be used to determine whether a particular sentence is part of a
language. Grammar 9.1 shows an example of a context-free grammar in Backus-Naur form
(BNF). The grammar consists of a set of terminal and non-terminal symbols, a non-terminal as
starting symbol, and a set of rules. The non-terminal symbols are used to define the grammatical
rules in a structured and concise form. In Grammar 9.1, non-terminal symbols are indicated
with angle brackets “〈. . .〉”. Terminal symbols instead represent letters that are part of the
language. Grammar 9.1 illustrates terminal symbols within quotes ‘. . .’, where the string ‘UTF-8
Characters’ represents any allowed UTF-8 character for topic names in the MQTT protocol.

Example 19 (Grammar for MQTT Topics) Grammar 9.1 describes a language for topic
filters as they are used in the MQTT protocol. As described in Section 2.3.1, MQTT is a pub-
lish/subscribe protocol, where clients can subscribe and publish messages on topics. Grammar 9.1
defines the language of topic filters a client can subscribe to. The grammar defines different lay-
ers for a topic, which are separated by a slash (‘/’). Strings with UTF-8 characters can be
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〈TopicFilter〉 ::= ‘$’〈Body〉 | 〈Body〉

〈Body〉 ::= ‘#’ | ‘+’〈EmptyLevel〉
| 〈String〉〈EmptyLevel〉
| 〈Level〉

〈EmptyLevel〉 ::= 〈Level〉 | ε

〈Level〉 ::= ‘/’〈EmptyBody〉

〈EmptyBody〉 ::= 〈Body〉 | ε

〈String〉 ::= ‘UTF-8 Characters’

Grammar 9.1: The ruleset of a grammar in BNF that defines the syntax of topic filters used in
the MQTT protocol, where the start symbol is 〈TopicFilter〉.

between the slashes. Some of these characters have a specific semantic. For example, the hash
(‘#’) defines a wildcard, where a client subscribes to all subsequent topic layers starting with
the prefix before the hash. The plus (‘+’) represents also a wildcard, but this time only for one
level. Clients can only publish to topic names which means that wildcards are not allowed. Valid
topic filters are, e.g., temp/gf/kitchen, temp/gf/#, or /// and examples for invalid topics are
temp/#/kitchen or ##.

A grammar not only defines the words that are part of the language, but also enables the
creation of words that are part of the language. For fuzzing, the grammar can also be modified to
generate invalid words, e.g., including invalid characters. Using the grammar, we test whether
parsing the SUT correctly parsed the provided inputs. In addition, based on the grammar,
coverage-based metrics could be defined, such as the number of rules covered. The drawback of
grammar-based fuzzing is that the manual definition of such a grammar can be a tedious process
and requires some expert knowledge about the input format. We show the effectiveness of this
technique in a case study on the MQTT protocol which we present in Chapter 10.

9.2.2 Model-based Fuzzing

In model-based fuzzing, we generate a fuzzing-test suite based on a behavioral model. Our
model-based fuzzing technique considers a model that is previously learned using automata
learning techniques. Similar to the learning step, we use model-based testing techniques to test
if the SUT conforms to the learned model. In general, the provision of any coverage metric
in black-box fuzzing is difficult. With the underlying model, however, we can define coverage
metrics based on state or transition coverage.

Our model-based fuzzing technique derives abstract input sequences by traversing through
the provided model. Note that the provided model defines the behavior on an abstract level.
Hence, the generated input sequence is a sequence of abstract inputs. We concretize the abstract
input sequence in a specific way to create a test suite for fuzzing. A fuzzing sequence consists
of three parts: (1) an access sequence to a state, (2) a fuzzed input, and (3) a random input
sequence of non-fuzzed inputs. The access sequence (1) is used to generate a fuzzing test suite
that provides state coverage. By doing so, our test suite visits at least once each state. The
concretization of the inputs of the access sequence is similar to the one used in learning in order
to reach the desired state. The access sequence is followed by a single fuzzed input (2). Our
fuzzing mapper concretizes the fuzzed input using fuzzing techniques. Hence, the concretization
includes unexpected values and invalid inputs. The last part of the fuzzing sequence consists
of a sequence of random abstract inputs (3). The random inputs in the suffix are concretized
using the same concretization as in learning. The random suffix is used to determine whether
the fuzzed input imposed any unexpected state transitions.
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Figure 9.3: Model of a learned BLE device. The highlighted colors indicate the edges traversed
during the generation of a fuzzing sequence, where the blue parts indicate the access sequence
to a state, the red one the fuzzed input and the green ones the randomly generated suffix of the
sequence.

Figure 9.3 introduces the model-based fuzzing technique using a color scheme, where the
blue parts show the access sequence to a specific state, red indicates the fuzzed input, and green
indicates the suffix of random inputs.

Example 20 (Model-based fuzzing for BLE.) The colored fuzzing sequence in Figure 9.3
would be the following abstract input sequence

pairing req · feature rsp · length rsp · version req · pairing req

, where the colors identify the corresponding parts. This sequence accesses State q3, selects
length rsp as input to be fuzzed, and appends as random input sequence the inputs version req ·
pairing req. The fuzzed input is concretized using fuzzing techniques, such as selecting a value
that is within the reserved bytes for the field but may be prohibited by the specification. For
example, for the fuzzed input length rsp the concrete BLE packet in Scapy syntax would be

BTLE()/BTLE DATA()/BTLE CTRL()/LL LENGTH RSP(max tx bytes ∈ [0, 28), . . .),

where we could set the value of the field max tx bytes between the range 0 to 28. The concrete
value can be randomly chosen or selected giving a preference to boundary values. To create an
invalid value, our fuzzing mapper chooses, e.g., the value 0.

The last part of the randomly generated input sequence is used to determine whether the
fuzzed input introduces any unexpected state change. For this purpose, we check if we still
observe the same output sequence after executing the fuzzed input. If the observed output
sequence is different, we found new behavior. For further analysis of such unexpected behavior,
we can try to identify the reached state by appending the characterization sequences of each
state to the input sequence. The characterization sequences correspond to the sequences in the
W-set as proposed by Vasilevski [186] and Chow [39]. With this, we can determine which state
is accessed or if we explored an unknown state.

The advantage of our proposed model-based fuzzing method is that the causes of unexpected
behavior are better traceable since only one input is fuzzed. Furthermore, we can investigate
if the fuzzed input only leads to unexpected behavior when executed in a specific state. The
disadvantage of our method is that only one input is fuzzed with one concretization at a time.
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Hence, a large set of sequences is necessary to fuzz the system sufficiently, especially if the
number of possible packets is large. In Chapter 10, we evaluate our proposed model-based
fuzzing method on a case study on BLE devices.

9.2.3 Filter-based Fuzzing

We propose another fuzzing method called filter-based fuzzing. filter-based fuzzing aims to
combine behavioral coverage with thorough fuzzing of a single input. This fuzzing technique
reuses the data generated in learning. In active learning, we perform a set of output queries
for learning a behavioral model. Consequently, the set of performed output queries covers the
whole behavior that is described in the learned model. Therefore, this set provides state and
transition coverage.

To overcome the limitations of our model-based fuzzing technique, which only fuzzes one
input at a time, we want to fuzz the same abstract input with several different concrete values.
Our filter-based fuzzing method iterates through each input sequence of all performed output
queries. In this input sequence, we fuzz every input of the sequence, where the input concretiza-
tion is similar to one for fuzzed inputs in model-based fuzzing. We fuzz the same input multiple
times using different values for the concretization of the fuzzed inputs. Hence, an input sequence
is executed with the number of inputs times the number of concretizations.

Fuzzing every input of each input sequence multiple times is not very practical, as this can
be very time-consuming, especially for larger systems. To make our filter-based fuzzing method
feasible, we add an additional filtering step to decrease the considered test suite. In the filtering
step, we only select one or two abstract input symbols of each input sequence that we want to
fuzz. If fuzzing reveals unexpected behavior, we add the input sequence to our test suite. This
test suite is then used for further thorough fuzzing as previously described. In this case, we fuzz
now every input of the filtered input sequence. This fuzzing technique fuzzes the system very
thoroughly and provides state and transition coverage in the first filtering step. However, this
approach takes quite some time, especially, if the filtered set contains a lot of traces.

9.2.4 Search-based Fuzzing

Our fourth developed fuzzing method is called search-based fuzzing. Search-based fuzzing aims
to minimize the size of the test suite as much as possible. For this purpose, we base the test
suite on a single input sequence. Instead of shrinking a given set of traces, our search-based
technique generates a single input sequence. For this, we define a fitness function that guides
the search. Similar to our filter-based fuzzing technique, the SUT is filtered twice: first during
the generation of the input sequence, and then a second time when the input sequence is fuzzed
again considering further concretizations of the different input symbols.

The fitness function evaluates a given input sequence according to its effectiveness in fuzzing.
The effectiveness is based on the potential to observe unexpected behavior when fuzzing this
input sequence on the SUL. In addition, the fitness function also considers the number of visited
states. We define the fitness function as follows

fseq =

n−1∑
j=0

bnew(i0 · . . . · ij)
|sI |

|Qvisited|
|Q|

. (9.2)

Let sI be the evaluated input sequence, and bnew
i be the number of newly observed behavior

during the fuzzing of the i-th input of sequence sI . New behavior is observed when the execution
of the fuzzed input on the SUT leads to a different output than the execution of the non-fuzzed
input. Hence, we define bnew for an input sequence i0 · . . . · ij as follows

bnew(i0 · . . . · ij) =

m∑
k=1

1 if λ∗M(q0, i0 · . . . · ij) 6= λ∗SUT (q0, i0 · . . . · ij−1 · fuzz (ij)), (9.3)
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Algorithm 10 Search-based input sequence generation for fuzzing

Input: black-box access to SUL, input alphabet I, learned modelM, maximum iterations imax

Output: input sequence sI
1: sI ← init sequence(I)
2: fseq ← calc fitness(sI ,SUL,M)
3: i← 0
4: while i < imax do
5: s′I ← mutate(sI , I)
6: f ′seq ← calc fitness(s′I ,SUL,M)
7: if f ′seq > fseq then
8: sI ← s′I
9: fseq ← f ′seq

10: end if
11: i← i+ 1
12: end while

where m ∈ N is the number of repetitions for fuzzing the input ij , λ
∗
M and λ∗SUT being the output

functions for the learned model M and the SUT respectively, and fuzz(ij) be a function that
concretizes the input ij according to fuzzing methods, all other inputs are concretized similar
to the concretization method applied during learning. Note that Equation 9.2 also considers
a factor of the number of visited states |Qvisited| in relation to the total number of states |Q|,
where Qvisited ⊆ Q is the set of accessed states in the learned model M when executing sI .

Algorithm 10 describes the procedure for generating the input sequence for fuzzing. The
algorithm starts by initializing the input sequence sI in Line 1. The input sequence sI can
either be initialized with the empty sequence or a random input sequence generated from the
given input alphabet I. As a next step in Line 2, we calculate the fitness value of the initial
sequence based on the fitness function defined in Equation 9.2. The generation of the input
sequence is fixed to a maximum number of iterations imax ∈ N. We modify the input sequence
from Line 5 to Line 11. Each iteration starts with the mutation of sI in Line 5.

The mutation of the input sequence in Line 5 considers two different operations for mutation.
First, we can add a new input from the input alphabet to the sequence. Second, we can exchange
an existing input with another input. However, to explore more new behavior, we append new
inputs at the end of the sequence with a higher probability. In Line 6, we then calculate the
fitness value of the mutated input sequence based on Equation 9.2 and compare it with the
fitness value of the sequence before mutation in Line 7. If the new fitness value is higher, we
then consider the mutated input sequence as a new sequence including an update of the fitness
value.

With this technique, we can generate a single input sequence that can later be used for a more
exhaustive fuzzing of the SUT. Note that the calculation of the fitness value takes some time
since every input in the sequence is fuzzed several times. However, executing a single sequence
afterwards is much faster than fuzzing a set of sequences. The disadvantage of this method is
that the fitness function may optimize to a local maximum of the fitness value. Furthermore,
depending on the learned model, a single sequence might not be sufficient to cover all states.

9.2.5 Genetic-based Fuzzing

Our genetic-based fuzzing approach is based on our search-based fuzzing technique presented
in the previous section. Genetic-based fuzzing aims to overcome the disadvantages of search-
based fuzzing by applying a genetic algorithm. In general, a genetic algorithm searches for a
solution by evolving a population of solutions within a certain number of generations. For the
generation of a new population, the current population is mutated using mutation operators. For

125



mutation, individuals are changed as in the search-based approach, crossover between individuals
is applied, or newly generated individuals are added. The selection of the individuals for the
next generation is then based on the fitness value of each individual. For the calculation of the
fitness value, we consider again the fitness function presented in Equation 9.2.

The population consists of a finite set of input sequences. We evolve this set of input
sequences iteratively. In each generation, the set of input sequences is modified according to
the search-based fuzzing technique, but only for a smaller number of iterations. Based on the
fitness value of each input sequence, we select a certain number of the fittest sequences. The
fittest sequences are sequences with the highest fitness value. To generate a new population, the
fittest sequences are added to the next population, as well as sequences that are generated using
the crossover of two sequences. For the crossover operation, we take two of the fittest sequences
and cut them into two parts, where the sizes of the shares are randomly chosen. The first part
of the first sequence is then appended by the second part of the second sequence. The same
applies in reverse for the other parts. In addition, the new population is extended by a sequence
of randomly generated input sequences. In the next evolution step, the new population is again
modified according to the search-based fuzzing technique followed by the input selection process.
The genetic algorithm terminates after a certain amount of generations. For fuzzing, we either
take the fittest sequence or a (sub)set of the population of the last generation.

The advantage of this technique is that the search space is larger since several traces are
considered at the time. Furthermore, it is more likely to find traces with a higher fitness score.
The disadvantage is that fuzzing takes more time since the fitness calculation has to be applied
to each input sequence in the population in every generation.

9.3 Conclusion

This chapter introduced different black-box fuzzing concepts. One challenge in black-box fuzzing
is to determine if the SUT has been tested in-depth. To overcome this issue, we presented
model-based fuzzing techniques. The model builds the basis to provide coverage metrics but
also supports the analysis of found issues. Our learning-based fuzzing framework showed that
the required models can be automatically generated using automata learning techniques. In
our framework, we use active learning for mining a behavioral model. Parts of the framework
required for active learning can be reused for fuzzing the SUT. Especially, the structure of the
mapper component can be modified for fuzzing, where abstract inputs are not only translated to
valid concrete inputs but also to invalid values. Learning-based fuzzers implement conformance
testing techniques to reveal behavioral differences between the learned model and the SUT.

We then presented different strategies for concretizing inputs and generating input sequences.
For the concretization of inputs, we introduced a grammar-based fuzzing technique, where inputs
are generated considering an underlying set of rules that define the language of the input format.
Furthermore, we present different techniques to build a fuzzing test suite based on the learned
model, the set of queries used for learning, and search-based techniques. In the next chapter, we
evaluate the presented fuzzing techniques in different case studies on communication protocols.
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(RQ 3.1) How can black-box fuzzing techniques be extended with automata
learning?

We presented learning-based fuzzing as a novel fuzzing technique that combines automata
learning and fuzz testing to develop a stateful black-box testing technique. We defined
learning-based fuzzing as a two-step procedure in which we first learn a behavioral model
and then use the model to fuzz a system. To create input sequences that reveal unexpected
behavior, we introduced different approaches, including grammar-based, coverage-based,
or search-based techniques.
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Chapter 10

Case Studies on
Learning-based Fuzzing

Declaration of Resources

This chapter provides case studies for the methods presented in Chapter 9. Hence, the
resources stay the same. Section 10.1 is based on the paper “Learning-Based Fuzzing of
IoT Message Brokers” [11]. Section 10.2 describes the case study that is presented in the
paper “Stateful Black-Box Fuzzing of Bluetooth Devices Using Automata Learning” [148].
Sections 10.3 is based on the Master’s Thesis of Benjamin Wunderling with the title
“Model Learning and Fuzzing of the IPsec-IKEv1 VPN Protocol” which is co-supervised
by the author of this thesis.

The following chapter presents different case studies on the learning-based fuzzing approach
introduced in the previous chapter. First, we apply grammar-based fuzzing to test different
implementations of MQTT brokers. Section 10.1 presents the results on fuzzing MQTT. In
Section 10.2, we evaluate model-based fuzzing on BLE devices. As a last case study, Section 10.3
compares filtering-based, search-based, and genetic-based techniques for fuzzing VPN servers.

10.1 Grammar-based Fuzzing of MQTT

In this section, we introduce a learning-based fuzzing technique for MQTT brokers. The goal is
to test different MQTT brokers for unexpected behavior using grammar-based fuzzing. Testing
MQTT brokers is critical since they present a single point of failure in an MQTT network and
are responsible for reliable communication. Hence, it is essential to test whether an MQTT
broker does not introduce any reliability issues or security vulnerabilities.

Tappler et al. [170] showcased that learning deterministic models of different MQTT broker
implementations is indeed possible. In their paper, they present that their learned models
already reveal violations of the MQTT specification. Our fuzzing technique focuses on testing
for security issues on the MQTT broker. For this purpose, we test if any unexpected concrete
input values reveal such issues.

Figure 10.1 shows the general learning-based fuzzing setup for fuzzing MQTT brokers. Our
fuzzing framework follows the two-step procedure of learning-based fuzzing. In this two-step
procedure, we first learn the behavioral model of one SUL which represents an implementation
of one MQTT broker. As discussed in the previous chapter, we learn the behavioral model on a
more abstract level. The abstracted model is then used as the basis for fuzzing different SUTs,
which represent different MQTT broker implementations.

Considering only one behavioral model for fuzzing comes with several advantages. First, the
learning setup needs only be created for one SUL. Tappler et al. [170] outline that different
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Figure 10.1: Learning-based fuzzing setup for fuzzing MQTT brokers. We first learn a behavioral
model of one system. The learned model builds the basis for fuzzing different implementations.

configurations were required to learn deterministic models of the different MQTT broker imple-
mentations. We also presented in Chapter 8 that the learning runtime quite differs between the
considered MQTT broker implementations, since the waiting time for responses is quite high for
some brokers. In addition, results of previous work [122, 170] show that one broker implemen-
tation exists that best conforms to the MQTT specification [22]. Note that this does not imply
that the SUL can be part of the set of tested SUTs, as the fuzzing is performed on the concrete
packet level. Since a different concretization is used, we may observe different behavior.

All experiments for this case study have been performed on a MacBook Pro 2018 with an
Intel Quad-Core i5 running at 2.3 GHz using 16 GB memory. The source code of the learning
and fuzzing framework is also publicly available online [126].

10.1.1 Learning Setup for MQTT

For learning the behavioral model on an MQTT broker, we follow the learning setup provided
by Tappler et al. [170]. Figure 10.2 illustrates the learning framework that consists of four
components related to the automata learning framework presented in Chapter 4 and Chapter 5.
The four components include a (1) learning algorithm, (2) a mapper, (3) an MQTT client and
(4) an MQTT broker. The goal of this framework is to learn a behavioral model representing
the MQTT broker.

Learning algorithm (1). Our learning-based fuzzing technique, considers always an active
learning technique. Similar to Chapter 8, we reuse for fuzzing an MQTT client written in Java.
Therefore, we prefer to use the same programming language throughout the learning framework.
We use the automata learning library LearnLib [90] version 8, to learn the behavioral model.
Considering the benchmarks for LearnLib performed by Aichernig et al. [15], we use the L∗

algorithm [17] with the improvements proposed by Rivest and Schapire [156]. For equivalence
testing during active learning, we used an equivalence oracle that is based on a finite number of
random walks. During this random walk, we perform 3 000 steps on the SUL with a probability
of 0.09 to reset the SUL to the initial state.

Mapper (2). To make learning feasible and to enable learning-based fuzzing, we require the
model to represent an abstraction of an MQTT broker. Hence, we implemented a mapper com-
ponent that translates the abstract inputs into concrete inputs and concrete outputs into ab-

Learning
Algorithm

Mapper MQTT Client
MQTT
Broker

abstract
input

abstract
output

concrete
input

concrete
output

TCP/IP
packet

TCP/IP
packet

Figure 10.2: Learning framework for learning MQTT brokers.
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stract outputs. The abstract input alphabet for learning is IA = {connect, disconnect, subscribe,
unsubscribe, publish, invalid}, which is concretized by the mapper to the concrete input alphabet
I = {connect, disconnect, subscribe(topicFilter), unsubscribe(topicFilter),
publish(topicName,message)}. The fields topicFilter , topicName, and message are concretized
by the mapper to a sequence of UTF-8 characters that are valid according to the MQTT specifi-
cation. In contrast to the learning setup of Tappler et al. [170], we also consider an input invalid
which represents an input, where the mapper concretizes the fields topicFilter , topicName with
the UTF-8 character U+0000. We refer to the character U+0000 as NULL character. The NULL

character is according to the MQTT specification forbidden and should be rejected by an MQTT
broker. For the output abstraction, we follow the translation provided by Tappler et al. [170],
where the abstract outputs are OA = {connack, conclosed, puback, suback, unsuback} with the
concrete inputs O = {connack, conclosed, puback publish(topicName,message), suback,
unsuback}.

The mapper is stateful in the sense that it stores the topics to which the client subscribes,
to create deterministic behavior on publishing messages. For example, if a client subscribes to
the topic filter temperature/gf/+, then the client publishes to the corresponding topic names,
e.g., temperature/gf/kitchen.

MQTT client (3) The used MQTT client is equal to the one used in Chapter 8 which is
based on the implementation of Tappler et al. [170]. The client enables communication with the
MQTT broker. In our case study, we consider only MQTT brokers that support the MQTT
standard v5.0 [22]. Hence, the implemented client also supports the MQTT v5.0 standard and
is implemented in Java. For fuzzing and testing purposes the client does not perform any packet
validation or sanitization. This enables to send and receive packets that do not conform to the
MQTT standard. In contrast to the learning setup for MQTT presented in Chapter 8, we only
consider one client for learning. Since the focus in fuzzing is more on providing unexpected
inputs, the number of clients is assumed to be of less importance.

MQTT broker (4) The last component in the learning setup is the SUL, which is an
MQTT broker implementation. For our learning-based fuzzing technique, we only learn one
MQTT broker implementation. Tappler et al. [170] and Mladenov [122] found that the Eclipse
Mosquitto MQTT conforms best to the MQTT specification compared to other investigated
MQTT broker implementations. Thus, we only learn the behavioral model of the Eclipse
Mosquitto broker.

Note that we decided not to reuse the learned models presented in the work of Tappler
et al. [170] due to several reasons. First, at the time of the experiment execution, the broker
implementations were updated to newer versions. In addition, also the MQTT standard changed
from v3.1.1 to v5.0. Second, we consider a slightly different input alphabet that also models the
behavior in case invalid inputs are provided.

Figure 10.3 depicts the learned model of the Eclipse Mosquitto MQTT broker interacting
with one client. The model shows three different states: q0, q1, and q2. In the initial state q0

the client is not connected. If the client connects to the broker, we enter q1. In this state, the
client can publish messages which are acknowledged by the broker with a PUBACK message. If
the client subscribes to a topic, we traverse to state q2, where the client receives in addition to
the acknowledgment of the published message, the published message itself, which is indicated
by the output PUBACK PUBLISH. We learned with the previously discussed learning setup.
The used L∗ variant required 114 output queries and one equivalence query to learn the model.
Learning took approximately 260 seconds.
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Figure 10.3: Learned behavioral model of the Eclipse Mosquitto MQTT broker. This model
serves as a basis for our learning-based fuzzing different MQTT broker implementations. Note
that some input actions are grouped by the ‘+’ symbol.

10.1.2 Fuzzing setup

Based on the learned model of the Eclipse Mosquitto MQTT, we use learning-based fuzzing
to fuzz the different MQTT broker implementations. The goal is to test, whether the MQTT
parses the received fuzzed inputs correctly. Moreover, we want to check if the broker introduces
any security vulnerabilities in an MQTT framework.

Figure 10.4 illustrates a possible attack of a malicious client that publishes to a topic that
contains the invalid NULL character. An MQTT broker that conforms to the specification does not
forward such a message to any subscribed client. The NULL is forbidden since some programming
languages such as C use this character to delimit strings. If the client parses the received packet
from the broker, the given packet length does not correspond to the length of the provided
string, which can lead to possible attack scenarios.

For fuzzing, we simulate such a malicious client, where the fuzzing mapper is responsible
for generating concrete inputs that contain unexpected and invalid characters. To fuzz such a
scenario, we apply fuzzing on the application level, where we test the parsing of topic filters.

In Section 9.2.1, we explained grammar-based fuzzing on the example of a grammar that
defines the language of topic filters as they are used in MQTT. We use Grammar 9.1 to
generate invalid and unexpected topic filters and names, where topic names exclude the wildcard
characters ‘+’ and ‘#’.

The MQTT specification [22] defines several special cases for topics that should be rejected by
an MQTT broker implementation. For example, Grammar 9.1 includes topics starting with $SYS.
$SYS-topics should be considered invalid since they are used for internal broker communication.
Hence, a client should not be able to mimic such internal communication. In learning, we already
used topics that include the NULL character, which is prohibited by the MQTT specification.

À
MQTT
Client

\
MQTT
Broker

Malicious
Clientsubscribe(t/#)

publish(t/tU+0000t,msg)
?

Figure 10.4: A malicious client publishing a message to an invalid topic filter. A correctly
implemented MQTT broker, should not forward such an input to any subscribed clients.
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Furthermore, the MQTT specification defines the UTF-8 characters from U+0001 to U+001F as
characters that should not be accepted in topic filters. For generating other unexpected inputs,
we can simply adapt the set of UTF-8 characters to consider characters that are well-known in
fuzzing to enforce unexpected behavior, such as characters for string format attacks.

We create our fuzzing test suite based on the same conformance testing technique used during
learning. Hence, we generate the fuzzing test suite by randomly walking through the learned
model. The learning interface can be adapted for fuzzing, where the client implementation can be
reused and the mapper is replaced by the grammar-based fuzzing mapper. Hence, our learning-
based fuzzing framework follows the framework presented in Figure 9.2. For the concretization
of abstract inputs, the fuzzing mapper considers invalid and unexpected topic filters and names
that are generated based on the provided grammar. As in conformance testing, we then compare
if the received output conforms to the output defined in the model. If the outputs are different,
we possibly found an issue that should be further investigated. To generate the random input
sequences, we decided not to reuse the conformance testing technique provided by LearnLib.
Instead, we implemented our own model-based testing framework that generates random input
sequences. The custom implementation was required, to better log the executed fuzzing inputs
and to deal with the case that the SUT crashes due to an unexpected input. Our conformance
testing test suite for fuzzing comprises 1 000 conformance tests, where each conformance test
includes 50 inputs. Each input is concretized with the fuzzing mapper, where only inputs with
topic filters and names are fuzzed with unexpected characters.

10.1.3 Case Study Subjects

In our performed case study, we evaluate our grammar-based fuzzing technique by testing five
different MQTT broker implementations. The following MQTT brokers with their corresponding
versions have been considered:

• Eclipse Mosquitto 1.6.81,

• ejabberd 20.7.0,2

• EMQ X v4.0.03,

• HiveMQ 2020.24, and

• VerneMQ 1.11.05,

where all brokers support the MQTT v5.0 standard [22]. Note that the Eclipse Mosquitto
broker is used as SUL as well as SUT. This is useful since the fuzzing mapper considers a different
concretization of inputs than the mapper used in learning. All brokers run in a local network
to avoid outside interference. Note that our setup allows us to run several fuzzing instances in
parallel if the MQTT brokers are configured to listen to different ports in the local network. In
Chapter 8, we mentioned that brokers take different amounts of time to respond. For fuzzing,
we set the waiting time for a response to the time it takes the slowest broker to respond. For
this, the waiting time is set to 200 milliseconds.

1https://mosquitto.org/
2https://www.ejabberd.im/
3https://github.com/emqx/emqx
4https://github.com/hivemq/hivemq-community-edition
5https://github.com/vernemq/vernemq
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Figure 10.5: The screenshot shows several terminal windows. We see that a malicious client
(upper right corner) can send UTF-8 control characters to the VerneMQ broker (lower right
corner) and that the broker forwards these characters to a subscribed client (left side). We see
that the text first becomes red and then becomes invisible due to the changed font color.

10.1.4 Results

The following section presents the results of our learning-based fuzzing technique. The results
of our case study revealed that all tested MQTT brokers show non-conforming behavior to the
learned model. The found behavioral differences hint at possible security vulnerabilities or show
violations of the MQTT specification.

We divide the found issues and inconsistencies into three categories: (1) acceptance of invalid
characters, (2) acceptance of topics beginning with the dollar symbol ‘$’, and (3) inconsistent
number of received publications. In the following, we describe the three categories in more
detail.

Acceptance of invalid characters (1). In this category, we evaluate if the MQTT brokers
accept characters that should not be accepted or must not be accepted. We found that three
out of five tested MQTT brokers accept characters that should not be accepted according to
the specification. The affected brokers are ejabberd, EMQ X, and VerneMQ. For example,
these brokers accept publications and subscriptions to the topic /te U+000A st, where the UTF-8
character U+000A is in the range of non-recommended characters ranging from U+0001 to U+001F.

That these characters might be harmful is shown in Figure 10.5. The screenshot depicts
three terminal windows. In the left window, we run a publicly available MQTT client called
wolfMQTT6. The terminal window in the upper right corner runs our custom MQTT client
implementation which represents a malicious client. On the lower right, we run the VerneMQ
MQTT broker, to which both clients are connected. The wolfMQTT client subscribes to the
topic filter temperature/# and our malicious client publishes messages to the following topics:

1. temperature/kitchen

6https://github.com/wolfSSL/wolfMQTT
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2. temperature/terminal-is-now- U+001b [0;31m red

3. temperature/and-it-stays-red

4. temperature/and-it-gets- U+001b [0;30m invisible

Figure 10.5 shows that the first message is normally displayed on the wolfMQTT windows.
However, the second received topic name is different from the topic name used by our malicious
client. In addition, the font color changed to red. The control sequence U+001b [0;31m can be
used to change the font color in the terminal permanently. And the fourth input shows, that
text can also be made invisible in case it is set to the background color of the terminal. This
reveals that the affected broker forwards UTF-8 control characters to other clients.

More seriously, VerneMQ also distributes the prohibited NULL character. This issue can
be exploited on clients in the MQTT network that are written in C. We can again showcase
a possible attack scenario using the wolfMQTT client. A possible attack might include the
following steps:

1. wolfMQTT & malicious client connect to VerneMQ

2. wolfMQTT subscribes to test/#

3. malicious client publishes to test/te U+0000 st

4. wolfMQTT processes truncated topic name test/te

This can be dangerous because clients written in C are probably allocating memory according to
the specified packet length. The displayed topic filter only shows a subset and an attacker can
then load malicious code into memory unnoticed by the client. Thus, it appears that VerneMQ
does not perform any topic validation or sanitization, which means that a malicious client can
distribute arbitrary topic filters and names within an MQTT network.

We also found one inconsistency between the behavior of the brokers HiveMQ and Eclipse
Mosquitto. In contrast to Eclipse Mosquitto, HiveMQ sends an additional disconnect
message, which according to the MQTT specification is also valid. Hence, both brokers act ac-
cording to the specification. This shows that still a manual investigation of found inconsistencies
is required to assess whether the inconsistency is a real issue.

Acceptance of topics beginning with the dollar symbol ‘$’ (2). The MQTT specifica-
tion defines that clients should not be able to communicate over topics that begin with the ‘$’
symbol. Additionally, the MQTT specification defines that topics starting with ‘$SYS’ should
be read-only for clients and publications on these topics are reserved for broker communication.

The results of our grammar-based fuzzing technique show that only HiveMQ conforms to the
learned model. However, HiveMQ and VerneMQ conform to the MQTT specification since
they allow subscriptions to topics beginning with ‘$’, but neglect received publish message.
However, their behavior in handling publish messages on such topics is different. HiveMQ
disconnects the client, whereas VerneMQ keeps the connection alive, but does not distribute the
message to other clients. The broker ejabberd does not strictly follow the MQTT specification
by responding to such messages with an acknowledge message but the broker does not distribute
them to other clients. We found that EMQ X and even the Eclipse Mosquitto broker, which
was shown in other case studies on MQTT as the most confirming MQTT broker, violate the
MQTT specification in this regard.

Figure 10.6 shows the extended model of the Eclipse Mosquitto broker including the
behavior on topics beginning with ‘$’. We see that the broker does not treat publish messages
on topics beginning with ‘$’ differently than those on valid topics. Hence, a client can also publish
messages on topics beginning with ‘$’. The same is possible for the EMQ X broker. However,
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Figure 10.6: Behavioral model of the Eclipse Mosquitto MQTT broker that shows that clients
can communicate via topics beginning with ‘$’. Note that some input actions are grouped by
the ‘+’ symbol.

there the behavior is even more alarming since this broker also allows clients to communicate
via topics with the prefix ‘$SYS’. Hence, clients can simulate broker communication which may
be security-critical in an MQTT network.

Inconsistent number of received publications (3). Our conformance testing technique
that we applied for fuzzing found differences between the learned model and the broker HiveMQ
regarding the number of received publish messages. If a client connects to a HiveMQ broker and
subscribes to overlapping topic filters, e.g., ‘temperature/#’ and ‘temperature/gf/kitchen’,
the client receives two publish messages if another client publishes to ‘temperature/gf/kitchen’.
All other investigated MQTT brokers only send one message in this case.

Sending multiple publish messages does not violate the MQTT specification. However, since
only one broker implements this behavior it enables the fingerprinting of this broker. This
again shows that found differences to the learned model require a manual analysis against the
specification to evaluate if they present an actual violation of the specification.

In summary, our conducted case study found violations to the MQTT specification in four out
of five investigated MQTT brokers. The only broker that conforms to the MQTT specification
was HiveMQ. We saw that also the broker that served as our SUL does not correspond to
the MQTT specification. This shows that the chosen level of abstraction was sufficient to test
the SUL. Furthermore, our fuzzing technique added value as the MQTT broker, which was
classified to be correct in the previous work of Tappler et al. [170], was shown to violate the
MQTT specification.

10.2 Model-based Fuzzing of BLE

The following section presents our case study on learning-based fuzzing of BLE devices. For
learning-based fuzzing, we apply the model-based fuzzing as introduced in Section 9.2.2. In
contrast to the case study on MQTT, the BLE devices heavily differ in their behavior as shown
in Chapter 4. Consequently, model-based fuzzing tests for behavioral differences considering the
individual models of each device. Following our case study on learning BLE devices presented in
Chapter 4, we apply our learning-based fuzzing technique on peripheral devices. Furthermore,
since many different BLE packets have been considered at different layers of the BLE stack, we
do not focus only on fuzzing a single field with a particular structure. In contrast, we present a
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more general learning-based fuzzing framework for testing BLE devices.

10.2.1 Learning Setup

The learning setup for learning BLE devices is described in Chapter 4. As learning algorithm,
we consider the L∗ algorithm for learning Mealy machines with the improvements proposed by
Rivest and Schapire. This time in fuzzing, we consider the individually learned model of each
device, since the models show a lot of difference in their implementation and supported features.
Hence, for our proposed approach it is necessary to learn a behavioral model of each fuzzed de-
vice. Note that the models represent an abstraction, where the abstract input alphabet for learn-
ing is IA = scan req, connection req, length req, length rsp, feature req, feature rsp,mtu req,
version req, pairing req, where the pairing req implements the legacy-pairing request. As shown
in the learning results of Chapter 4, some of the case study subjects could only be learned with
a subset of IA. For learning the same mapper was used for learning the connection procedure
presented in Section 4.2.3. In contrast to the learning setup of MQTT, we do not consider
invalid inputs for learning.

10.2.2 Fuzzing Setup

For our fuzzing setup, we apply model-based fuzzing. Each SUT is tested for conformance
with its learned model. The generation of the test suite follows the approach described in
Section 9.2.2. The input sequences generated with this technique contain non-fuzzed inputs and
one fuzzed input. For the concretization of non-fuzzed inputs, we simply use the concretization
as it was implemented by the mapper component that we used for learning. For fuzzing inputs,
we extended this mapper to also generate unexpected and invalid values.

The generation of fuzzed inputs is based on randomness. An abstract BLE input is translated
to a concrete BLE packet that contains many different fields that need to be concretized. For
example, the input connection req is translated to the BLE packet BTLE()/BTLE ADV(. . .)/
BTLE CONNECT REQ(interval, timeout, . . .). The concrete BLE packet
BTLE CONNECT REQ(interval, timeout, . . .) has, e.g., the fields interval and timeout. The
fuzzing mapper would then randomly choose one of the fields to concretize using fuzzing tech-
niques. All other fields of the BLE packet are translated as it has been done during learning. For
example, if the fuzzing mapper selects the field timeout for fuzzing, the mapper randomly selects
a value within a range. The packet BTLE CONNECT REQ considers two bytes for the timeout
field, hence the fuzzer concretizes the value by selecting a value between 0 and 216 − 1. The
fuzzing mapper selects these values randomly, but a higher probability is given to the selection
of boundary values, i.e., 0 or 216 − 1. According to the BLE specification, the timeout is used
to assess whether a connection is lost. The BLE specification defines that the value must be
set between 0.1 seconds and 32 seconds, which corresponds to the integer values between 10 and
3 200. Hence, the probability of choosing a value that is out of the specified range is high.

The set of considered abstract inputs for fuzzing is equal to one used for learning. The
fuzzing mapper implements a fuzzing-based concretization for each field in each input that is
based on the byte size of the corresponding field. For some fields, it makes sense to consider a
predefined set of possible concretizations such as for the features provided in feature request or
response. However, the set of possible values for all the fields could be easily derived from the
packet manipulation library Scapy [158].

For fuzzing, we generate a test suite generating nfuzz tests, which contain a random suffix of
inputs with length nsuffix. Since our used conformance testing technique provides state coverage,
we distribute the number of conformance tests equally in each state. In general, we want to
perform at least 1 000 conformance tests. Hence, we execute for each state d1000

|Q| e tests, which

means that the actual number of executed conformance tests is nfuzz = d1000
|Q| e·|Q|. Furthermore,
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Table 10.1: Results of the model-based fuzzing techniques for testing six BLE devices.

SoC States Fuzzing Rounds Crashes Queries CEX

CC2640R2F (no pairing req) 6 4 3 1 280 27
CC2640R2F (no feature req) 11 5 5 928 50
CC2640R2F (no length req) 11 5 5 767 39
CC2650 5 4 3 1 375 28

CC2652R1* 4 5 5 (6) 919 39
CYBLE-416045-02 3 2 1 1 413 38

CYW43455* 16 1 0 2 652 197
nRF52832 5 1 0 2 258 113

nsuffix is set to the number of states |Q| of the currently considered model, but in case the model
has less than five states nsuffix is at least set to five.

We calculate for each learned automaton the characterization set using the W-method [39,
186]. Since all models could be learned with L∗ in one learning round, the characterization set
is a subset or equal to the considered input alphabet. Hence, if a fuzzed sequence reveals an
unexpected observation, it requires executing at most |IA| additional input queries.

As discussed in Chapter 4, BLE communication might suffer from delayed or lost packets.
This can lead to non-deterministic observations or failed connection attempts. Hence, we repeat
the queries when we observe non-deterministic behavior or could not reset the system. The
maximum number of non-deterministic errors as well as the maximum number of connection
errors is set to 20. If we found unknown behavior on a fuzzed input, we repeat the query five
times to be sure that the new observation did not occur due to non-deterministic behavior. In
case the fuzzed input crashes the device, we terminate after observing 20 connection errors.

10.2.3 Evaluation

Framework. The model-based fuzzing framework was implemented in Python 3.9 in order
to provide a needless integration with the learning framework and the driver software for the
BLE central device. For conformance testing during fuzzing, we utilized the conformance testing
techniques of the learning library AALpy. For our case study, we used a customized version
of AALpy version 1.1.5, which was extended by a method to calculate the characterization
set. This method was included starting from version v1.1.7. For parsing and creation of BLE
packets, we use an adapted version of the Python library Scapy version 2.4.4., the adaptions
are available starting from version 2.4.5. The model-based fuzzing framework and the learning
framework are available online [145]. The repository also includes scripts to test and execute
the found issues.

Case Study Subjects. For our case study on model-based fuzzing of BLE devices, we con-
sidered the same six BLE devices as in the evaluation presented in Section 4.3.

Environment Setup. All experiments have been conducted on an Apple MacBook Pro 2019
operating at 2.4 GHz on an Intel Core i5 and 8 GB RAM. As central device, we use the Nordic
nRF52841 Dongle and the Nordic nRF52840 Development Kit, flashed with the firmware avail-
able on the SweynTooth [67] repository. This firmware allows to send custom BLE packets,
which are required for fuzzing the peripheral device.

10.2.4 Results

Table 10.1 shows the results of our model-based fuzzing approach for BLE devices. The table
lists the results for every investigated SUT. In case a special setup was used for learning and
fuzzing it is also indicated. For example, since it was not possible to learn a deterministic
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model of the CC2640R2 considering the whole input alphabet, we learned three different models
with an input alphabet reduced by one input. The three models are then individually fuzzed
with the corresponding reduced input alphabet. The devices indicated suffixed by ‘*’ mark
setups, where learning starts after an established connection since for these devices it was not
possible to reliably establish several consecutive connections. We will discuss this problem for
the CC2652R1 in more detail later. For the devices marked by ‘*’, we did not consider the
scan and connection request for fuzzing. For orientation, Table 10.1 also provides the number
of states of the learned models, which serve as a base for model-based fuzzing.

Table 10.1 presents the number of performed fuzzing rounds. A fuzzing round indicates one
attempt to execute nfuzz conformance tests. If the device crashes while executing the confor-
mance tests, the current fuzzing round is aborted. We declare a crash as a state of the tested
device, where the device becomes unreachable. In case of a crash, the device stops sending
advertisements and no BLE requests can be sent to the device to reset it to the advertising
state. Thus, the device needs to be hard reset. In practice, this vulnerability can be exploited
by a malicious device to make a device unreachable.

In case of a crash within the execution of our experiments, the cause for the crash is identified
and if it refers to a specific fuzzed field, the field is excluded in the next fuzzing round. If no cause
for the crash can be found, the conformance testing is simply restarted without any changes. In
case the device crashes two consecutive times and the reason cannot be determined, no further
fuzzing attempts are started.

The fuzzing results show that our fuzzing technique crashes four out of six investigated de-
vices. More seriously, fuzzing crashes in every attempt the CC2652R1, and the CC2640R2 in the
setup where it includes the pairing request. Note that the CC2652R1 states more crashes than
fuzzing attempts. This is possible since we already discovered a scenario that the device becomes
unreachable in learning the behavioral device. Initially, we tried to learn the model considering
the whole input alphabet. This was not possible since the device becomes unreachable after
performing two consecutive connection requests. Hence, the following sequence already caused
a crash on the CC2652R1:

scan req · connection req · scan req

Table 10.1 also presents the sum of executed queries during all conformance testing at-
tempts. The number of performed queries includes also queries that were repeated due to
non-deterministic observations or connection errors. Furthermore, queries were also performed
to validate found counterexamples and to determine the target state of an unknown transition.
The table also provides the number of counterexamples found during conformance testing. Note
that a high number of counterexamples does not necessarily imply that the SUT does not con-
form to the BLE specification. It rather states that the SUT implements some error-recovery
mechanisms when receiving unexpected or invalid input.

The median runtime of all fuzzing attempts without crashing was 6.3 hours, where the min-
imum was 3.7 hours for the CC2640R2 (no pairing req) and the maximum 42.2 hours for the
nRF52832. This long runtime of nRF52832 corresponds with the also disproportionately long
runtime for learning and the rather large number of counterexamples found, leading to a large
number of queries performed. The determination that a counterexample is valid also includes
several repetitions of the same query. Smart approaches to provide fault-tolerant fuzzing might
improve the runtime of the model-based fuzzing technique.

Table 10.2 presents the issues found during fuzzing. The issues and behavioral anomalies were
revealed by a manual analysis of the fuzzing logs in case the device crashes or a counterexample
to the conformance between the learned model and the output for fuzzing is provided. This
analysis filters out error recovery behavior which is assumed to be normal in case an invalid
input is provided. Table 10.2 enumerates the found issues and anomalies in three categories and
also lists which SoCs are affected. The three categories differentiate between crash scenarios
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Table 10.2: The found issues that are revealed by our model-based fuzzing technique for BLE
devices.

ID Issue SoCs

C1 crash on consecutive connection req CC2652R1

C2 crash on connection req(interval) CC2640R2F, CC2650, CYBLE-416045-02

C3 crash on connection req(timeout) CC2640R2F, CC2650

C4 crash on connection req(latency) CC2640R2F, CC2650

A1 multiple responses to version req CC2652R1

A2 accepting pairing req(max kex size :> 16) CYW43455

A3 connection termination on length rsp nRF52832

A4 unknown behavior on
length {req, rsp}(max {tx , rx} bytes)

CC2652R1

V1 key size reduction on
pairing req(max kex size : [7, 16])

all devices (except CYBLE-416045-02)

(C), behavioral anomalies (A), and security vulnerabilities (V). Every entry is indexed by the
letter representing the category, e.g., ‘C’ for crash scenarios followed by an increasing numerical
index.

Crash scenarios (C). All the detected crash scenarios are detected by fuzzing the connection
request.

(C1) As explained above, the crashing scenario C1 was already detected during learning of the
CC2652R1 and is due to the execution of an additional connection request in case a connection is
already established. We contacted Texas Instruments Inc. about this issue and they explained to
us that the preinstalled application stops sending advertisements if two consecutive connection
requests are performed. However, the issue is that it does not return to the advertising state
even if both clients disconnect. This issue can be fixed in the code of the running application.

(C2-C4) We found out that three devices crash on invalid values if we fuzz the fields interval ,
timeout , or latency . Where CC2640R2 and CC2650 crashed on fuzzed values for all these fields,
CYBLE-416045-02 crashed for fuzzed values of the field interval . This issue has already been
published for the CC2640R2 in CVE-2019-19193 [1], and is based on the BLE fuzzing results
of Garbelini et al. [66]. Our results show that this vulnerability also applies to other SoCs as
the CYBLE-416045-02 manufactured by Cypress Semiconductor Corporation is also affected by
this issue. All manufacturers have been contacted about the found issues and we assumed the
issues to be fixed in newer firmware versions.

Behavioral anomalies (A). Behavioral anomalies describe found behavior where our fuzzing
approach or a manual analysis shows that a particular behavior is different from all other con-
sidered devices. Table 10.2 shows that the found anomalies only apply to one of the devices,
which shows that these anomalies can also be used to fingerprint these devices. A1 and A2 refer
to anomalies that are already detected by analyzing the learned model. A3 and A4 are found
via our fuzzing method.

(A1) As already reported in Chapter 4, we found that CC2652R1 always responds to version
requests, even if the response is only allowed once according to the BLE specification.

(A2) The nRF52832 shows a very restrictive behavior when it receives an unexpected length
response. In this case, the nRF52832 terminates the currently established connection. Other
devices ignore an unrequested response and keep the connection alive.

(A3) Our fuzzing technique also revealed another behavioral anomaly for the CC2652R1.
We explored an unknown state in the CC2652R1 when fuzzing either the field max tx bytes
or max rx bytes in the inputs length req and length rsp. If the fields are set to an invalid

140



q0

q1 q2

q3

q4

q5

pairing req /
PAIRING RSP

pairing req /
FAILED

feature rsp /
LENGTH REQ

length rsp /
DATA

pairing req /
FAILED

pairing req /
PAIRING RSP

feature rsp /
LENGTH REQ

length rsp/
DATA

{mtu req,pairing req}/
DATA

version req /
VERSION IND

version req /
VERSION IND

version req /
VERSION IND

version req /
VERSION IND

length req invalid /LENGTH RSP
length rsp invalid /DATA length req invalid /LENGTH RSP
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+ / BTLE DATA

Figure 10.7: Partially extended model of the CC2652R1 that shows that an unexpected
length req or length rsp immediately followed by a valid mtu req and pairing req reveals an
unknown state.
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value, e.g., 0, and then immediately afterwards a valid mtu req and pairing req is performed
the systems enters an unknown deadlock state, where only BTLE DATA packets for any further
requests are received. Figure 10.7 depicts the partially extended model of the CC2652R1 that
shows how the previously unknown states can be reached. The model includes the state q5

which cannot be left by any other request.

(A4) We also found an anomaly in the CYW43455 which accepts pairing requests where the
maximum key length is set bigger than 16. According to the BLE specification, the maximum
key length should be defined between 7 and 16.

Security vulnerabilities (V). We also found one possible security issue in all devices that
accept pairing requests, i.e., all devices except the CYBLE-416045-02. The devices accepted val-
ues between 7 and 16 as the key length in the pairing request. Note that these values conform to
the BLE specification, but they still provide a security issue since shorter keys, especially if they
only have 7 bytes, can be easier brute-forced. The National Institute of Standards (NIST) [24]
also considers that key lengths of less or equal than 10 bytes are not secure. Antonioli et al. [19]
showed that this vulnerability can be exploited by key downgrade attacks.

10.3 Fuzzing of VPN

We have successfully fuzzed MQTT brokers with grammar-based fuzzing and BLE devices with
model-based fuzzing. As a last step, we want to compare the filter-based, search-based and
genetic-based fuzzing techniques in a case study on testing VPN servers. More specifically, we
fuzz IPsec IKEv1 implementations, since the key exchange for encryption must not introduce
any security vulnerabilities.

In the performed comparison, we compare our three learning-based fuzzing approaches
against each other and a baseline. The baseline represents fuzzing with randomly generated
sequences. We also show in this case study that our learning-based fuzzing techniques can
be extended by using already existing fuzzing libraries to create concrete values. For mining
the models, we extend the learning setup that we presented in Chapter 5 of the two learned
IPsec-IKEv1 server implementations.

10.3.1 Learning Setup

For this learning-based fuzzing approach on IKEv1 servers, we reuse the learning setup as
presented in Chapter 5. The considered SULs remain the same including their configuration.
Thus, we learn and then fuzz the IKEv1 implementation of the strongSwan and libreswan
server.

We learn the behavioral models of both IPsec servers, since the brokers behave differently.
We learned the models by filtering out retransmitted packets. Filtering-out retransmission was
enabled due to two reasons. First, we can reliably learn a model that serves as a basis for
fuzzing. Second, we aim to avoid false positive counterexamples during testing the conformance
between the learned model and the SUT.

For fuzzing, we learn new behavioral models using an extended input alphabet compared to
the one used in Chapter 5. For each input in the previously considered input alphabet, we add
an erroneous counterpart. Erroneous inputs are inputs where the mapper concretizes the input
by using invalid values. This is similar to the approach used for MQTT, but this time each input
also has an erroneous version. The following abstract input alphabet is used to learn models that
serve as a basis for learning-based fuzzing: IA = {main sa,main key ex, authenticate, quick sa,
quick ack,main sa err,main key ex err, authenticate err, quick sa err, quick ack err}. The
increased size of the input alphabet implies that more queries and input steps are required for
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Figure 10.8: Learned model for fuzzing the strongSwan server. Note that some inputs and
outputs are grouped by the ‘+’ symbol.
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Figure 10.9: Learned model for fuzzing the libreswan implementation. Note that some inputs
and outputs are grouped by the ‘+’ symbol.

learning. For learning, we used the KV learning algorithm with the Rivest and Schapire [156]
counterexample processing and all caching mechanisms enabled as described in Chapter 3.

Figure 10.8 shows the learned behavioral model of the strongSwan IKEv1 implementation.
We see that the model has the same number of states and most parts are similar to the base
model shown in Figure 5.4. The erroneous inputs usually lead to self-transitions that do not
influence the current state of the server. However, there exists one exception on performing a
quick sa error message in State q3. According to the protocol specification, the client sends
a quick sa message, where the server responds with an IPSEC SA message. The client then
acknowledges this response by a quick ack message. However, if the client sends a quick sa error
message, the server responds with an error. To complete the quick mode, the client needs to
send another valid quick sa message.

We repeated learning of the strongSwan model eleven times and it took on average
24.1 minutes to learn the model within four to five learning rounds, where 174 output queries
and 60 conformance tests were performed.

Figure 10.9 shows the learned model of the libreswan server. The learned model of the
libreswan IKEv1 implementation defines questionable behavior. In contrast, to the model
shown in Chapter 5 (Figure 5.5) the model learned with erroneous inputs defines an additional
state (q4). This additional state is immediately reached after performing a main sa err message.
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This state cannot be left by any input, since this state has no outgoing transitions. Thus, it
represents a deadlock state. Further manual analysis revealed the causes of this behavior. In
the configuration of the libreswan server, we defined that clients connecting with the same
identification number do not trigger a new connection. Instead, the connection is assigned to
the already connected client with the same identification number. For libreswan, using this
setup implies that it is impossible to recover from an initially send main sa err message. Hence,
resending a main sa message does not result in a valid connection.

10.3.2 Fuzzing Setup

For fuzzing IPSec servers, we follow a conformance testing approach where we test for behavioral
differences between the SUT and the learned model. For fuzzing strongSwan and libreswan,
learning-based fuzzing is based on the corresponding learned models presented in the previous
subsection.

For fuzzing an input sequence, we select one input at a time that should be fuzzed. The con-
cretization of the input is then performed by a fuzzing mapper, similar to the fuzzing techniques
of MQTT and BLE. IKEv1 packets consider different fields that must be concretized, where
we fuzz one field at a time. An input is fuzzed several times by choosing different fields and
concrete values for the selected fuzzed input. Hence, in contrast to BLE, fuzzing an abstract
input for IPsec yields several concrete input sequences that should be executed. Furthermore,
we repeat fuzzing of the same input sequence by selecting different inputs in the sequence.

In our fuzzing evaluation, we consider four different fuzzing setups: (1) filter-based fuzzing,
(2) search-based fuzzing, (3) genetic-based fuzzing and (4) random fuzzing. We introduced the
approaches (1)-(3) in Chapter 9. We also consider random fuzzing (4) to evaluate if generating
random sequences is sufficient to find the same issues as our more elaborate methods. In the fol-
lowing, we present the results that compare the different fuzzing techniques on the strongSwan
server. Due to the more complicated resetting procedure, we then only fuzzed the libreswan
server with the most successful technique from our evaluation of the strongSwan server.

Filter-based fuzzing (1). Our filter-based method uses the input sequences performed during
the learning of the model. This set provides state and transition coverage, which we assume to
be beneficial in a black-box scenario. However, since the set of queries can be large, we filter
the set only for interesting input sequences.

We took the set that was generated during our application of the KV learning algorithm.
The considered set of queries from learning with KV includes 220 queries. Hence, we consider
220 queries as a basis for our filter-based technique. By applying filtering as explained in
Section 9.2.3, we could reduce the set to 55 queries. For each input sequence, we pick two to
three inputs that should be fuzzed. For each input, we concretize up to three fields of the IKEv1
packet. For one selected field, we consider three different concretizations to enable fast filtering.
After this filtering step, we fuzz the SUT again with the filtered test suite. In this second round
of fuzzing, we fuzz the same inputs of the sequences more thoroughly. Therefore, we generate
about 250 concretizations for fuzzing one input.

Search-based fuzzing (2). For search-based fuzzing, we started with an empty sequence and
mutate this sequence according to Algorithm 10 for 50 iterations. To evaluate the fitness score,
fuzzing considers only a few concretizations. The concretization technique is similar to the one
used in the filter-based approach. For strongSwan, our search-based fuzzer generated after 50
iterations the following sequence with eight inputs

sa main · key ex main · sa main err · sa main·
sa main err · sa main err · sa main err · authenticate err.
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In a second fuzzing step, this sequence is then again executed on the SUT. This time,
however, with a more thorough fuzzing, where each input of the sequence, one after another,
with several concretizations is fuzzed.

Genetic-based fuzzing (3). For our genetic-based algorithm, we set the parameters to ensure
that the approach remains comparable to the search-based technique. Hence, we consider only
five generations and each population consists of ten input sequences. The initial population is
generated by random input sequences of length three. For mutating the sequence, we apply to
each sequence two mutations at a time. The next population of the next generations consists
of the three fittest individuals of the current population. We choose randomly two of the three
fittest sequences to generate two further sequences using crossover as described in Section 9.2.4.
The remaining five traces are generated by simply random input generation. The length of the
random sequence is randomly selected with an upper bound |slong

I |+1, where slong
I is the longest

input sequence in the population. To score the population, we again use fewer concretizations
to allow fast fuzzing.

For fuzzing strongSwan, the fittest sequence in the last generation has 18 inputs. Similar
to search-based fuzzing, we use the input sequence with the highest fitness score to fuzz the
system more thoroughly a second time.

Random fuzzing (4). The random input sequences serve as a baseline to evaluate if a simple
random sequence could find the same issues as the techniques (1)-(3). For this purpose, we
generate random input sequences considering the given input alphabet with a length similar to
the sequences generated by the search-based and genetic-based techniques. After the generation
of a random sequence, we then fuzz each input of the sequence.

For all four discussed techniques, we applied the same technique to concretize abstract inputs.
For this purpose, we take advantage of already existing fuzzing tools, as they proved their
success in revealing issues in other systems. We used the network protocol fuzzing library
boofuzz [142], which comprises techniques for generative and mutative fuzzing. For generative
fuzzing predefined packet structures are required. However, since our mapper component already
considers the underlying packet structures, we only use the mutative component. The mutative
fuzzer of boofuzz generates besides valid and boundary values also concrete values for a given
datatype that are known to be harmful to systems.

10.3.3 Environmental Setup

The environmental setup stays the same as for learning VPN servers as presented in Chapter 5.
We use two VMs, where the one that simulates the client also runs the learning-based fuzzing
framework. The second VM runs the corresponding IKEv1 servers. Both VMs are simulated
in VirtualBox 6.1 running with Ubuntu 22.04 LTS and use 4 GB RAM and one CPU core.
Our SUTs are the strongSwan U5.9.5/K5.15.0-25-generic and libreswan U3.32/K5.15.0-41-
generic. For fuzzing, we use boofuzz v0.4.1.

10.3.4 Results

The following section presents the results of comparing different fuzzing techniques for the
strongSwan server. Afterwards, the section presents the found violations of the IKEv1 speci-
fication for strongSwan and libreswan.
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Table 10.3: The different fitness scores of the input sequences for fuzzing the strongSwan
server. The fitness scores are calculated according to Equation 9.2. The higher the fitness value,
the better it is for fuzzing.

Fitness Score

Random Sequence (length 8) 0.054

Random Sequence (length 18) 0.392

Filtering (avg) 1.471

Search 2.813

Genetic 4.700

Table 10.4: Runtime statistics of the different fuzzing techniques for the VPN case study.

Filtering Search Genetic

# Input sequences 55 1 1

Input sequence length 14 8 18
Seconds/input sequence 14 8 18
# Executed tests 192 500 2800 4500

Runtime (h) 60 26.5 31.6

Comparison of Fuzzing Techniques

Table 10.3 shows the fitness scores of the four different methods. For the filtering-based approach,
we selected randomly 20 input sequences from the filtered test suite and calculated the average
fitness value for the selected subset. Our results show, that the genetic technique achieved the
highest fitness score, where the presented score is taken from the fittest input sequence of the
last generation.

The second-highest fitness score was achieved by the search-based technique. Compared to
the genetic-based approach, we see that genetic-based fuzzing achieved a score that is 1.67 times
higher than the search-based technique. This shows that it is worth mutating multiple sequences
in parallel to observe more new behaviors and achieve higher state coverage.

The filtering-based technique has the third-highest fitness score. All our proposed fuzzing
techniques achieve a significantly higher fitness score than simple random generation. This shows
that our methods are more effective in revealing unexpected behavior while better traversing
the state space of the SUT.

Regarding the time required to generate the fuzzing sequence, the search-based approach
took 19.5 hours followed by the genetic-based approach that took 15.6 hours and the filtering-
based approach took 7 hours. Note that even searching one sequence took quite some time, the
parameters of the other two approaches were set up in such a way that they can compete with
the search-based approach. For example, to filter the set of queries, we do not fuzz all inputs
of a sequence and apply fewer concretizations for one input. Furthermore, our genetic approach
evolves the set of sequences only over five generations. Moreover, the fittest sequence found
by our genetic-based approach was more than twice as long as the sequence for search-based
fuzzing. Longer sequences have the disadvantage that they require significantly more time for
fuzzing.

Table 10.4 shows the fuzzing statistic for the filter-based, search-based, and genetic-based
fuzzing approaches. For our filter-based approach, we see that even if we only fuzz two or three
inputs for each input sequence in the filtered set, we still execute a huge number of concrete
input sequences. On average, we fuzzed for each input 283.80 different values. Since executing
one concrete input sequence takes approximately one second per input, longer sequences also
increase the runtime accordingly. For the filter-based approach, this sums up to a total runtime
of 60 hours, which means that fuzzing took 2.5 days. We see that fuzzing only one sequence
takes quite less time. Fuzzing the longer sequence of the genetic approach took 31.6 hours. At
26.5 hours the search-based approach took the least amount of time.
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Bug Hunt

Our investigated fuzzing techniques found specification violations in both tested IKEv1 imple-
mentations. We found two issues: (1) a missing ISAKMP header length check and (2) a delayed
isakmp authentication validation. Issue (1) was found in both SUTs, whereas (2) was only
observable for strongSwan.

ISAKMP header length check (1). All inputs from the main mode translate into ISAKMP
packets. The header of the ISAKMP packet includes a field for defining the length of the packet.
According to RFC 2408 [182] that defines the ISAKMP, the provided length should correspond
to the actual length of the packet (header plus payload) and the message must be rejected if the
provided length does not correspond. However, we see for strongSwan and for libreswan
that they both ignore this field. Hence, any value between 0 and 232 − 1 can be set as payload
length in the ISAKMP header, where, e.g., 0 is obviously invalid. Both IKEv1 implementations
accept such messages and do not respond with an error indication. In practice, this means that
a malicious client can set any value for this field. This could be beneficial for a malicious when
designing an attack.

Delayed ISAKMP authentication validation (2). The second issue was found when
fuzzing the sa main packet. The main sa packet concretizes to a ISAKMP packet containing
SAs. A single SA contains a field authentication, which specifies the used type of authentication,
e.g., pre-shared keys (PSKs). For the strongSwan server, we observed that also invalid values
can be provided and the server will still accept the SA proposal. The server responds later on
a main key ex input with an error identification due to the invalid authentication value in the
previous message. This behavior is especially suspicious since fuzzing any other field of an SA
proposal with an invalid value lead to immediate error notifications. Furthermore, the RFC
2409 [33] defines that an invalid proposal should be immediately rejected. This issue shows that
in fuzzing faults are not always immediately observable. However, our model-based approach
supports the localization of faults, since the observed behavior can be compared to the behavior
defined in the model.

Note that both issues for strongSwan were found with the filter-based, search-based, and
genetic-based fuzzing techniques. However, the randomly generated input sequences could not
reveal the found issues. For libreswan, we only tested search-based fuzzing, which was suc-
cessful to find the issue regarding the length field in the ISAKMP header.

10.4 Conclusion

We applied our developed learning-based fuzzing techniques that we presented in Chapter 9 to
case studies on communication protocols. Our achieved results show that our techniques are
indeed successful in finding violations of the specification and possible security issues. We found
with our grammar-based fuzzing technique that four out of five investigated MQTT brokers
violate the MQTT specification. The found issues reveal possible attack scenarios, where mali-
cious clients can forward possible harmful characters or mimic internal broker communication.
For learning-based fuzzing of BLE devices, we applied our model-based fuzzing technique. This
technique found that four out of six devices crash on fuzzed inputs. Furthermore, we found with
fuzzing previously unknown behavior and show that is possible to decrease the level of security in
the pairing procedure. Finally, this chapter compares different learning-based fuzzing techniques
in a case study on VPN servers. We showed that our filter-based, search-based and genetic-based
fuzzing techniques were successful in revealing two violations of the IKEv1 specification. The
comparison indicates that search-based approaches are useful to generate input sequences for
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fuzzing that can be efficiently executed but also sufficiently reveal unknown behavior. The case
study on VPN also shows that already existing fuzzing tools, such as boofuzz [142], can be
used to extend our learning-based fuzzing framework in order to generate interesting inputs.
Thus, learning-based fuzzing represents a powerful tool for stateful black-box fuzzing.

(RQ 3.2) Is learning-based fuzzing effective at revealing security issues?

In the presented case study, we evaluated the proposed learning-based fuzzing technique
of Chapter 9. Our evaluation considered three popular communication protocols: BLE,
MQTT, and IPsec-IKEv1. In all investigated protocols, we found violations of the cor-
responding protocol specifications. Our fuzzing technique uncovered that malicious mes-
sages could be forwarded to other components in the network and that we could mimic
server-internal communication. Furthermore, we showed that the key length of the en-
cryption key could be reduced, lowering the level of security. Our fuzzing technique also
revealed reliability issues in the tested BLE devices.
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Chapter 11

Related Work

The following chapter discusses related work and compares it to the approaches presented in this
thesis. The chapter divides the related work into five categories, with each category represented
by a distinct section. First, Section 11.1 presents automata learning applications for learning dif-
ferent communication protocols, followed by a discussion on improvements of automata learning
frameworks in practice in Section 11.2. In Section 11.3, we provide an overview of RNN-based
automata learning techniques. Then, Section 11.4 lists related work in the field of black-box
fuzzing, focusing on the communication protocols covered in this thesis. Finally, Section 11.5
provides some other related work in the context of BLE protocol analysis.

11.1 Learning Communication Protocols

Automata learning has been successfully applied to learn behavioral models of communication
protocols. In general, protocol implementations represent reactive systems that can be modeled
by, e.g., Mealy machines. With the introduction of learning algorithms for Mealy machines by
Margaria et al. [113], and Shahbaz and Groz [162], automata learning became a popular tool for
reverse engineering behavioral models of communication protocols. Furthermore, Damasceno
and Strüber [46] motivate the idea to use automata learning to fingerprint reactive black-box
systems such as communication protocols. The literature provides several case studies on learn-
ing different protocols. In the following, we list a selection of case studies that are closely related
to the work presented in this thesis. For this purpose, a particular focus is on applications for
fingerprinting and security testing.

11.1.1 Learning-based Testing

Learning-based testing is a method to test systems by learning a behavioral model using active
automata learning techniques. Aichernig et al. [8] provides a survey that categorizes the work on
learning-based testing based on its purposes such as conformance testing or security testing. For
conformance testing purposes, the learned models are used to reveal behavioral differences to a
specification. Their survey points out that there also exist techniques that utilize conformance
testing to compare learned models of different SULs for equivalence, i.e., automata learning
is used for differential testing [115]. Such an approach has been formalized and evaluated by
Aarts et al. [6]. We also find applications of this learning-based conformance testing technique
for different communication protocols. Argyros et al. [20] presents a framework for actively
learning symbolic finite automata of Transmission Control Protocol (TCP) implementations,
web application firewalls, and HTML/JavaScript parsers. Their presented framework includes
the analysis of behavioral differences between the learned models. Similar to our method, they
stress that differences between the models can be used for fingerprinting implementations. An-
other case study is presented by Tappler et al. [170], where they learned behavioral models
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of MQTT brokers. For learning, they followed an active approach using the learning library
LearnLib [90]. They compared the learned model with each other, where behavioral differ-
ences possibly witness violations of the MQTT specification. In their work, they investigated
five MQTT brokers and found four brokers that violate the MQTT specification. Only, Eclipse
Mosquitto does not reveal any inconsistencies to the MQTT specification. Similar to the case
study of Tappler et al. [170], our case study on learning-based fuzzing includes the Eclipse
Mosquitto and the VerneMQ broker. In contrast to their results, our fuzzing technique also
revealed inconsistencies to the specification in the Eclipse Mosquitto implementation.

Aarts et al. [3, 5] showed that learning-based testing is also applicable for physical devices.
In their work, they learned implementations of communication protocols on bank cards [3] and
on biometric passports [5]. For both techniques, they use a card reader to execute the queries
from the learner on the SUT. All models were learned on a more abstract level, using a mapper
component similar to the one introduced in Section 2.2.2. For learning, they applied the L∗

algorithm for Mealy machines implemented in the learning library LearnLib. After learning,
they performed a manual analysis comparing the learned models with each other and with a
specification model, if available. To validate the learned models of biometric passports [5], they
used JTorX [25] to test whether the ioco conformance relation between the learned model
and a provided reference model holds. The ioco conformance relation can be used to test for
output inclusion between an implementation and a specification, and is formally defined by
Tretmans [179, 180].

11.1.2 Protocol State Fuzzing

Learning-based testing proved to be a useful tool for reverse-engineering and testing commu-
nication protocol implementations of black-box systems. Testing for specification violations is
especially important when the protocol implements security-critical behavior. Hossen et al. [83]
outlines also the possibility of model learning to investigate security flaws in protocols. Thus,
it is not surprising that the literature provides several case studies on learning-based testing
security-critical protocols. These techniques are often referred to as protocol state fuzzing.

Closely related to our work on learning VPN servers, Daniel et al. [47] learned behavioral
models of OpenVPN servers. In contrast to our approach, they consider several layers of the
protocol, where the key exchange is abstracted to a single input. Similar to our approach they
experienced multiple challenges in the generation of a learning setup that are discussed in more
detail in the Master’s thesis of Novickis [134].

De Ruiter and Poll [50] used protocol state fuzzing to analyze implementations of the TLS
protocol for security violations. Similar to other learning-based testing case studies, they applied
the L∗ implementation in LearnLib to learn behavioral models. The authors then manually
analyzed for suspicious transitions in the model that could cause security issues. They revealed
security issues in three out of nine tested implementations. In addition to the work on BLE
and VPN presented in Chapter 4 and Chapter 5, a case study on DTLS [63] demonstrates the
success of protocol state fuzzing. The case study on DTLS investigates thirteen implementations
and found several security flaws. For example, one of the learned models shows the possibility
to bypass an authentication procedure. Sivakorn et al. [163] propose also a framework that uses
automata learning to analyze and test the hostname verification of different SSL/TLS implemen-
tations. Their framework found several violations in the tested implementations. Furthermore,
their evaluation shows that their automata learning technique achieves better code coverage than
black-box and coverage-guided gray-box fuzzing techniques. Further case studies present that
other protocols such as QUIC [154] can also be learned by active automata learning techniques.

In our case study on BLE, we showed that protocol state fuzzing is also feasible for the
learning of physical devices. However, applying automata learning on physical devices comes
with various challenges and requires a robust learning interface to deal with these kinds of
challenges such as packet loss or delayed packets. Similar challenges were also reported in the
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case study presented by McMahon Stone et al. [168] on learning the 802.11 4-Way Handshake
implementations on Wi-Fi routers. However, the disclosure of three novel security vulnerabilities
by McMahon Stone et al. shows that a possibly tedious learning setup pays off.

Learning physical devices becomes challenging if buttons or keys must be pressed to trigger
an input. Chalupar et al. [37] showed how a learning interface can be built using Lego R© to query
a smartcard reader. Based on this interface, active learning can be used to learn a behavioral
model of a smartcard reader. In Chapter 4, we also presented a learning setup that uses Lego R©

that keeps the SUL in motion to prevent the device from entering a sleep mode.

Learning-based testing has also been proposed as a toolkit component for automotive security
testing by Ebrahimi et al. [55]. Their work includes case studies on learning wireless protocols
like Bluetooth Classic and BLE, with the BLE approach following our technique presented in
Chapter 4. With the support of the author of this thesis, they also learned a behavior model of
the Unified Diagnostic Services (UDS) protocol implemented on an electronic control unit. The
jointly learned model discloses a security vulnerability.

Learning models of communication protocols can also be useful for applying further analysis
techniques. Fiterău-Broştean et al. [61] used the actively learned models of TCP protocol
implementations as the basis for model checking. For model checking, they manually derived
properties from the RFC and checked them on the learned model using NuSMV [40]. To do so,
the learned model must be translated into a model that enables model checking via NuSMV.
Fiterău-Broştean et al. [62] applied a similar approach for learning and model checking SSH
implementations. Closest to our work in this regard is Guo et al. [80]. They learned behavioral
models of IPsec-IKEv2 implementations. Subsequently, they use the learned models to verify
properties using NuSMV.

11.1.3 Passive Automata Learning

All techniques discussed so far for learning behavioral models of communication protocols con-
sider active automata learning approaches. The advantage of active techniques is that the state
exploration simultaneously tests the SUL. However, this also implies the requirement that an
active interface can be established. In contrast, passive automata learning does not require such
an interface but still allows the reverse engineering of behavioral models from a given sample,
e.g., log files. Therefore, passive learning might be a promising technique when traces can be
monitored or are available, but establishing an active interface is not feasible. In the following,
we provide examples of passive learning for network protocols.

Cui et al. [45] cluster similar messages in a given sample of network traffic to learn finite
state models of network protocols. Their case study includes the following protocols: Hypertext
Transfer Protocol (HTTP), Remote Procedure Call (RPC), and Server Message Block (SMB).
In their work, they find that their generated models are larger than necessary and need to be
minimized. They also point out the limited behavioral coverage of their sample. Therefore, their
learned models are unlikely to sufficiently generalize the behavior of the SUL.

Hsu et al. [86] passively learn the finite state machine of the Microsoft MSN instant messaging
(MSNIM) protocol by applying a state merging algorithm that is akin to the RPNI algorithm.
Similar to our learning-based fuzzing technique discussed in Chapter 9, they then use the learned
model as the baseline for model-based fuzzing. Their model-based fuzzing technique generates
traces that target transition coverage. However, since their learned model does not define every
input in every state, it is more difficult to detect any unexpected behavior on undefined inputs
than is the case with our actively learned models. Moreover, the approach misses a statement
about the quality of the passively learned model in terms of behavioral coverage of the underlying
black-box system. Therefore, the coverage achieved later can only be as good as the coverage
provided by the given sample used for learning. Nevertheless, their approach was successful to
reveal crash scenarios in the MSNIM implementations.

To filter data for passive learning of communication protocols, Comparetti et al. [43] proposed
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a framework that selects the sample based on its impact on the system behavior. They then
group similar messages to create an appropriate abstraction. The filtered sample is then used
to passively learn a behavioral model applying existing state merging techniques. With this
technique, they learn behavioral models of a chatbot protocol, Simple Mail Transfer Protocol
(SMTP), SMB, and Session Initiation Protocol (SIP). Even though their proposed tool filters
messages, the quality of the sample in terms of behavioral coverage of the SUL is not discussed.
As our results in Chapter 6 show, passive learning requires a large sample to achieve the same
state coverage as active learning.

11.2 Improvements for Automata Learning in Practice

The case studies on learning communication protocols show that the reverse engineering of
behavioral models is useful for the analysis of black-box systems. However, automata learning
has practical applications not only in learning communication protocols. Aichernig et al. [9]
showed that learning-based testing can also be applied in industry. In their case study, they
present a learning framework for learning a measurement device that is used in the automotive
industry. However, their case study also showed that the learning setup was not straightforward
and required an enhanced adaption of the learning interface. To this end, they extend the model
to include sink states that are reached upon detecting non-det behavior.

In particular, the application of active automata learning for learning physical systems usu-
ally requires a sophisticated setup to enable robust learning. Chapter 4 presents a framework for
learning wireless protocols. As discussed earlier, such a setup presents several challenges that
require different countermeasures to make learning feasible. In the literature, we find similar
approaches to enable learning from physical systems.

11.2.1 Alphabet Abstraction

The first challenge in learning real systems is the size of SUL. For example, when learning
communication protocols, the protocols use messages that contain arbitrary byte streams. Con-
sidering all possible messages would make learning infeasible in an appropriate amount of time.
For this purpose, we abstract the input and output alphabet that is considered in learning.
Section 2.2.2 introduces the mapper concept originally proposed for automata learning by Cho
et al. [38]. In their work, they learned behavioral models of botnet protocols. To concretize and
abstract the alphabet they deployed existing tools to generate valid messages, and then manually
created the mapping. In general, mappers are not new in testing, e.g. in model-based testing
they bridge the level of abstraction between a given test model and the SUT [151]. Aarts et
al. [7] formally define the mapper as a transducer following the definition of Mohri [123]. Aarts
et al. demonstrate the practicability of their presented mapper component with a case study of
learning an abstract model of SIP and TCP implementations. The use of such an abstraction is
common for learning communication protocols, as demonstrated in the case studies on TCP [61],
MQTT [170], or DTLS [63]. We also use such an abstraction component for learning MQTT
brokers, BLE devices, and VPN servers. The concept of the mapper component is also used
in the first level abstraction for learning abstracted non-deterministic systems as explained in
Chapter 8. In addition, the learning-based fuzzing methods, introduced in Chapter 9, reuse the
structure of the mapper to generate inputs for fuzzing.

11.2.2 Algorithmic Improvements

Abstraction techniques reduce the size of the observable state space of the SUL. However, for
the application of automata learning, the goal is to keep the number of interactions with the
SUL as low as possible without compromising the expressiveness of the learned model. We
presented several techniques to reduce the number of executed queries on the SUL in Chapter 3.
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In addition, Chapter 6 compares the efficiency of systematic querying with random sampling.
The problem of reducing the number of queries formed the baseline for different competitions on
active automata learning. The Zulu competition [42] asks for learning approaches that can learn
systems solely by asking a limited amount of membership queries. Thus, equivalence queries are
not provided and must be substituted by further membership queries. Howar et al. [85] present
the winning solution and outline goals for future challenges, e.g., focus on learning real systems.
The successor to the Zulu challenge is the Rigorous Examination of Reactive Systems (RERS)
challenge [91], which asks for testing approaches for analyzing reactive systems.

Berg et al. [26] provide insights into Angluin’s [17] L∗ algorithm based on different metrics.
For this purpose, they investigate the number of required queries, the runtime, and the memory
consumption required by L∗. Furthermore, they propose an adapted version of L∗ that includes
improvements to learn prefix-closed languages. In particular, their evaluation on real systems
shows that the prefix-closed assumption is sufficient for modeling reactive systems and helps
to reduce the number of membership queries. In their work, they assume to have access to an
equivalence oracle. However, this assumption does not hold in practice. Considering the aspect
of the absence of an equivalence oracle, Aichernig et al. [15] evaluated different conformance
testing techniques that substitute the equivalence oracle. In their evaluation, they combined
the testing techniques with different learning algorithms to assess the influence of the chosen
conformance testing technique on the learning algorithm. They also extended a passive learning
algorithm for active learning as proposed by Walkinshaw et al. [189]. Similar to the results
presented in Chapter 6, their results show that random querying requires large samples to learn
a model that sufficiently defines the SUL. This applies especially when only random samples
are provided to the active version of the passive learning algorithm. Another result of their
conducted case study is that counterexample processing is beneficial for the number of queries
required in active learning. Their observation correlates with our results for our improved
version of the KV algorithm that implements the counterexamples processing of Rivest and
Schapire [156]. Finally, they recommend using a randomized version of the partial W-method [65]
for conformance testing or at least some coverage-based methods. As learning algorithm, they
recommmend to use either ADT [64], TTT [89], or L∗ [17] with the improvements proposed
by Rivest and Schapire [156]. Our case studies followed this recommendation by using the
improved version of L∗ and a coverage-based conformance testing technique as a substitution
for the equivalence oracle. However, our improved version of KV also shows promising results
and should be considered as part of the evaluation performed by Aichernig et al. [15].

11.2.3 Choice of Modeling Formalism

Our presented case studies on learning real systems show that not only an efficient learning
algorithm is required to make learning applicable in practice. Other countermeasures are needed
to deal with environmental conditions such as packet loss or delayed messages. One possibility
to overcome this issue is to develop an advanced learning interface. This is consistent with the
common procedure for learning real systems as described in the literature [9, 50, 61, 62, 168, 170]
and by us in Chapter 4 and Chapter 5. Another approach is to consider a different modeling
formalism that can model behavioral aspects such as non-deterministic, timed, or stochastic
behavior.

In Chapter 8, we used a non-deterministic learning algorithm to learn MQTT brokers. El-
Fakih et al. [56] propose another L∗-based learning algorithm for learning ONFSMs. However,
they assume that the teacher provides all possible outputs at once. To make the approach feasi-
ble in practice, they assume that all outputs can be observed after a finite number of repetitions
of an output query. Similar approaches for learning ONFSMs are proposed by Pacharoen et
al. [140], and Khalili and Tacchella [97]. Pacharoen et al. [140], however, take the number of
repetitions that are required to observe all outputs into account when analyzing the runtime
of their proposed learning algorithm. Khalili and Tacchella [97] evaluated their approach on
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a practical case study on learning a non-deterministic model of a Trivial File Transfer Proto-
col (TFTP) server. In our case study on learning non-deterministic models of MQTT brokers,
we found that learning is possible by repeating queries for a certain number of times. However,
we weaken the assumption that all observations must be observable after a finite number of
repetitions. To do this, we adapt the learning algorithm so that it can handle additional ob-
servations that are observed at a later time. Learning non-deterministic systems has still the
disadvantage of requiring a large number of queries to be executed on the SUL. To overcome
this drawback, we added an additional layer of abstraction to keep the model small. Bolling
et al. [29] used a similar concept for their learning algorithm, where they model deterministic
systems with a non-deterministic modeling formalism.

The literature also provides learning algorithms for learning timed or stochastic behavior.
The learning algorithms for timed and stochastic behavior can be divided into passive [32, 110,
111, 171, 174, 188] and active [10, 76, 77, 172, 173, 184] techniques. Considering these additional
behavioral characteristics increases the complexity of learning and limits its feasibility. For ex-
ample, due to the infinite state space of timed systems, it is especially for active approaches
important that the number of required queries is kept at a feasible level. For this purpose,
Aichernig et al. [10] propose a search-based technique to learn timed automata. For learn-
ing stochastic systems, the literature also provides active [172, 173] and passive [32, 110, 111]
techniques.

11.2.4 Alternative Assumptions for Learning

Our presented learning frameworks require that we can reset the SUL and that unexpected
behavior due to environmental conditions can be identified and filtered out by our learning
interface. We also discussed the costs of the countermeasures in terms of the additional in-
teraction required to meet these assumptions. In the literature, we find learning algorithms
that implement different solutions to overcome these assumptions. Rivest and Schapire [156]
propose a learning algorithm that does not require resetting the SUL. Groz et al. [79] present
another reset-free learning algorithm for learning Mealy machines. The issue of these learning
reset-free learning algorithms is that they require to execute a homing sequence that enables the
identification of individual states. Similar to executing a reliable reset, the execution of homing
sequences must be reliable. This can be problematic for systems that occasionally exhibit non-
deterministic behavior, since the algorithm assumes to have reached a state in the SUL that does
not correspond to the actual state of the SUL. Therefore, the execution of homing sequences
requires the same countermeasures as a reliable reset.

To deal with occasional non-deterministic behavior due to environmental conditions, there
also exist learning algorithms [109, 159, 183] that can handle this type of behavior. In the
literature, samples are called noisy if the sample contains data that does not reflect the actual
or common behavior of the system. All learning algorithms for noisy data operate passively,
applying different techniques like state-merging [159], evolutionary algorithms [109], or encod-
ing as SAT problem [183]. From a theoretical point of view, Angluin and Laird [18] investigate
the amount of noise that a sample might contain in order to learn a probably approximately
correct (PAC) [185] model. For active learning, Khmelnitsky et al. [99] investigate the influence
of different kinds of noisy data on the L∗ algorithm, where the equivalence oracle is approxi-
mated with random samples that are large enough to provide PAC guarantees. Using learning
algorithms that can handle noisy data is indeed an interesting future direction in learning real
systems.
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11.3 RNN-based Learning Approaches

Passive learning techniques are required when a reliable interface that allows active interaction
cannot be established or causes too much overhead in learning. However, in our comparison of
active and passive learning algorithms presented in Chapter 6, we found that passive learning
requires a large random sample to compete with active approaches. In practice, this may
justify the overhead active learning algorithms require to handle unexpected behavior due to
environmental conditions.

Another angle to address this problem is to develop learning algorithms that better gener-
alize on a sparse sample. For this purpose, we presented an RNN-based learning algorithm in
Chapter 7. In the literature, we find several approaches that utilize RNNs in the context of
automata learning. The approaches can be divided into three categories: (1) training of RNNs
to simulate finite automata, (2) inferring finite automata from trained RNNs, (3) training RNNs
to predict the structure and behavior of a finite automaton.

First RNN-based techniques can be assigned to Category (1). Already in 1956, Kleene [101]
investigated the suitability of neural networks to simulate finite automata that accept regular
languages. Later in 1967, Minsky [121] followed by presenting a general methodology to construct
a neural network to simulate finite automata.

It took some decades to bring this topic back to life by approaches that can be assigned
to Category (2). Omlin and Giles [137] infer DFAs from RNNs that accepts regular languages.
Their approach is based on clustering hidden states of the RNN, where each cluster represents
a state in the DFA. Dong et al. [53] uses the clustering approach of Omlin and Giles [137] to
learn Markov chains. Tiňo and Šajda [177] proposed a different clustering technique for hidden
states based on self-organizing maps to infer Mealy machines. An analysis by Michalenko et
al. [118] shows that hidden state clusters do not necessarily allow an exact mapping to states in
a deterministic automaton. However, they showed that sufficient encoding could be found for
an abstraction of the automaton.

There also exist several techniques to generate finite automata from RNNs by applying active
automata learning techniques. Weiss et al. [190] apply the L∗ algorithm to query the RNN to
extract a DFA. For the implementation of the equivalence oracle, they followed the clustering
idea proposed by Omlin and Giles [137] to compare the learned hypothesis with the RNN. In
subsequent work, this L∗-based approach has been extended for weighted automata [191] and
context-free languages [200]. Mayr and Yovine [114] learn DFAs from trained RNNs by applying
L∗, where the equivalence oracle is based on PAC sampling. Muškardin et al. [130] compared
different conformance testing techniques for the equivalence oracle in learning DFAs from trained
RNNs. They recommend model-based testing techniques that take the underlying structure of
the model into account. For active learning, they used the learning library AALpy [129].
The initiation of the TAYSIR competition [58] also indicates the increasing interest in finding
solutions for extracting finite automata from trained RNNs. The winner [125] of the first edition
of this competition is based on our active automaton learning library AALpy [129]. Khmelnitsky
et al. [98] showed that these automata learning approaches can be used to verify RNNs. For
this purpose, they first learn a behavioral model from the RNN using active automata learning
and then they apply model checking to very properties based on the learned models.

Category (3) considers techniques that train RNNs, given specific regularization constraints,
to infer structural information about the underlying finite automaton. The RNN-based learning
framework presented in Chapter 7 also falls into this category. Oliva and Lago-Fernández [136]
propose an approach that is closely related to our technique. To regularize the RNN, they
consider noise in the activation function of the hidden layer to enforce binary predictions. Similar
to our approach their network simulates a regular language. Unlike our technique, they do not
predict the next state, but perform training that enforces dense clusters of the hidden states,
where the clusters correspond to states in the model.
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11.4 Black-box Fuzzing

Fuzzing has its origin in the testing of UNIX utilities [119]. From then on, the success story
of fuzzing began with the disclosure of numerous bugs in different software applications. The
success of fuzzing is due to its simple and fast applicability. Nowadays, there exist several
tools [69, 72, 142, 201] that allow immediate fuzzing of a system. In the following, we will only
discuss related black-box fuzzing techniques of the investigated protocols in this thesis. For a
general classification and explanation of fuzzing, we refer to the “The Fuzzing Book” by Zeller
et al. [202] and to the survey by Godefroid [71].

To guide black-box fuzzing, we provided a behavioral model of the SUT. The literature lists
several fuzzing tools for communication protocols that are model-based [23, 69, 92]. The fuzzers
“GitLab Protocol Fuzzer Community Edition” [69] and SNOOZE [23] apply black-box fuzzing
based on a given model. The tool T-Fuzz [92] extracts the model during compile time of the
SUT. Therefore, the framework is not applicable in a black-box setting.

In the literature, we also find model-based fuzzing techniques targeted to a specific commu-
nication protocol. Garbelini et al. [66] apply model-based fuzzing to BLE devices. By applying
this technique, they found several BLE issues, where they call the presented collection Sweyn-
Tooth. As a successor, Garbelini et al. [68] create a similar framework for Bluetooth Classic.
Their model-based fuzzing technique was again successful in creating a collection of found Blue-
tooth flaws assigned to BRAKTOOTH collection. Their framework forms the base for our
learning-based fuzzing approach for BLE devices that we presented in Section 10.2. In contrast
to their work, we use automata learning to automatically generate a behavioral model of each
BLE device, whereas Garbelini et al. manually created one general model. The disadvantage of
generating a general model for BLE is that the BLE specification [87] is underspecified in some
parts. Hence, a general model also needs to cover all possibilities for underspecified behavior.
The usage of a general model could hamper the identification of behavioral differences due to
unexpected inputs. Furthermore, individual models allow a more precise coverage measurement
for model-based fuzzing.

In general, manually created models need to be continuously updated, and the manual mod-
eling process can be error-prone. Therefore, learning is preferable when it is feasible. Doupé et
al. [54] fuzz web applications based on inferred models. For this purpose, they first crawl the
web application under test. Based on the crawled traces, which are a set of HTTP command
sequences, they then generate a model using state-merging techniques. In the last step, they
use the model to generate sequences that are fuzzed with existing tools, similar to our fuzzing
technique for VPN servers. As discussed in the previous section, Comparetti et al. [43] proposed
a general framework that passively learns behavioral models from different communication pro-
tocols. They then show that the learned models can serve as an input for the model-based
black-box fuzzer Peach, which is the predecessor of “GitLab Protocol Fuzzer Community Edi-
tion” [69].

Black-box fuzzers like boofuzz [142] represent frameworks that are specialized to fuzz com-
munication protocols. They require as input a syntactic definition of the underlying protocol
packets that should be fuzzed. These syntactic definitions are often called templates. In addi-
tion, these fuzzers frequently apply mutative fuzzing techniques to insert invalid or unexpected
inputs. For fuzzing VPN servers, we used boofuzz [142], but only to mutate inputs. We did
not provide templates since our fuzzing mapper already considers the structure of the individual
packets to generate fuzzed inputs. Another mutative black-box fuzzer for VPN, more specifi-
cally for IKEv1, was proposed by Yang et al. [197]. They provide structural templates for the
packets, but also include a database of known vulnerabilities to create interesting fuzzing test
cases. Similar to our approach, they found in the tested implementations that the ISAKMP
header length field can be set to zero without rejecting the packet. In contrast to our results,
they do not report the missing validation of the header length field for the Strongswan server,
which was also part of their considered implementations under test. Tsankov et al. [181] propose
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another black-box fuzzer for IKEv1 implementations. For their fuzzer, they manually derive a
set of constraints from the IKEv1 specification, which built the baseline to generate invalid and
valid inputs. With their approach, they found a vulnerability in the OpenSwan implementation
which was the successor of libreSwan, which we investigated in this thesis.

Black-box fuzzing is also a popular tool to test MQTT protocol implementations. For doing
so, there exist publicly available tools like mqtt fuzz [44] or “Eclipse MQTT test suite” [94].
In the literature, we also find work on fuzzing the MQTT protocol. Ramos et al. [153] present a
black-box approach that requires templates similar to the fuzzer boofuzz [142]. Mutation-based
fuzzing is then used to generate test cases based on the provided templates for MQTT brokers
and clients. Casteur et al. [34] also present a black-box fuzzing technique for MQTT brokers,
they add a scoring technique that serves as an indicator for observed unusual behavior. Palmieri
et al. [141] propose a general assessment tool for MQTT brokers. The tool generates a PDF-file
that reports the results of the various performed security analysis techniques. One of the applied
techniques also includes fuzzing, where akin to our method malicious/forbidden topic filters
are tested, e.g., topic filters starting with $SYS/. In difference to our technique, the existing
techniques rather test for possible denial of service attacks. In contrast to our technique for
model-based fuzzing of MQTT brokers, the provided techniques do not provide any behavioral
coverage metrics. Furthermore, unexpected state transitions are more difficult to determine
without any notion of states. Sochor et al. [165] also present a black-box testing framework
for MQTT brokers. Based on attack patterns, they generate a test suite that is executed on
different MQTT broker implementations. Similar to our learning-based fuzzing technique, they
used the Eclipse Mosquitto broker as a reference implementation. In difference to our fuzzer,
their testing technique assumes that the Eclipse Mosquitto broker conforms to the MQTT
specification, where our results show that this is not the case. There also exists a gray-box
fuzzer for MQTT: Zeng et al. [204] propose a coverage-based fuzzer that uses a custom socket
implementation to interact directly with the SUT, which enables the simultaneous establishment
of multiple connections and faster fuzzing. However, such an approach is only applicable if the
MQTT broker socket could be instrumented to directly execute commands.

One challenge in fuzzing is that a large amount of inputs are usually executed on the SUT.
Especially for real devices, executing a fuzzing test suite takes some time, often several days. To
speed up fuzzing, Ruge et al. [157] present a framework called Frankenstein that enables BLE
fuzzing of a locally emulated version of the BLE firmware. However, this technique requires the
elaborative design and development of a framework that enables emulation.

11.5 Other Related Work

There also exists related work on the analysis and testing of the BLE protocol that can neither
be assigned to automata learning nor fuzzing. Celosia and Cunche [36] proposed an approach
for fingerprinting BLE devices. For fingerprinting, they collected data on the Generic Attribute
(GATT) profile layer of the BLE stack. For their performed case study, they collect over five
months over 13 000 distinct profiles. Their results show that many devices leak privacy-critical
information. Compared to our approach for fingerprinting BLE devices, they only investigate
the data of one layer of the BLE stack. The GATT profile provides information about the offered
service and other characteristics, hence fingerprinting is solely based on these data and not on
the actual BLE stack implementation.

That the Bluetooth protocol is an interesting target for security analysis is underlined by the
number of published collections of attacks and vulnerabilities. We have already discussed the
model-based fuzzers for BLE and Bluetooth Classic that created the vulnerability collections
SweynTooth [66] and BRAKTOOTH [68] respectively. Furthermore, the BLE fuzzing tool
Frankenstein [157] found memory corruptions that enable, e.g., write access to the memory.
Published attacks like BlueBorne [160] and BLEEDINGBIT [161] demonstrate that Bluetooth
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attacks can be distributed unnoticed over the air and enable the remote control of vulnerable
devices. Our fuzzing results also show that some devices are vulnerable to downgrades of the
encryption key length as it is shown by the KNOB attack [19]. Wu et al. [195] demonstrate that
actual security vulnerabilities can be found by analyzing the Bluetooth specification. Their work
shows that an attacker can mimic a BLE device in such a way that the other party thinks it is
a trusted device. All these results on BLE motivate (automated) techniques to verify protocol
implementations.
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Chapter 12

Conclusion

This thesis presented a holistic evaluation of the suitability of automata learning for the testing
and analysis of communication protocols in networked systems. A special focus of this evaluation
was to assess whether automata learning can support the security analysis of the investigated
black-box systems. For this purpose, we applied automata learning to learn behavioral models
of communication protocol implementations. We outlined observed challenges in doing so and
evaluated alternative learning techniques. As a last step, we showed how automata learning can
successfully support security testing techniques to reveal security issues.

The following chapter summarizes our results and concludes the thesis with a final discussion
of the proposed research questions. Finally, we provide an outlook on future work.

12.1 Summary

This thesis investigated whether automata learning can support the security analysis of net-
worked environments. This evaluation focused on the feasibility of the proposed methods. The
goal was to outline security analysis techniques that successfully can be translated to other
network components following the proposed methods. To achieve this goal, we (1) learned pro-
tocols, (2) discussed alternatives to overcome challenges, and finally (3) proposed learning-based
security testing techniques. We structure the summary respectively.

12.1.1 Learning Communication Protocols

As a first step, we investigated if automata learning can be used to learn actual protocol im-
plementations on physical devices. For this purpose, we investigated the Bluetooth Low En-
ergy (BLE) protocol, which is a popular communication protocol in the Internet of Things (IoT)
for short-distance communication. For our case study on learning BLE devices, we followed a
protocol state fuzzing approach. To actively query the BLE devices, we proposed a learning
framework that considered additional hardware that allowed us to send custom BLE packets
to the system under learning (SUL). Learning a wireless communication protocol introduced
several challenges such as lost or delayed packets. Furthermore, we had to deal with non-
deterministic observations. We created a learning interface that allowed us to react to such
unexpected behavior during learning.

We learned the behavioral models of eight different BLE devices. The considered devices
included system on the chips (SoCs) from manufacturers such as Texas Instruments, Cypress, or
Nordic Semiconductor. The investigated devices also included BLE chips on popular hardware
such as the Raspberry Pi. Additionally, we showed that our learning framework could be applied
to learn behavioral models of BLE devices that are installed in a Tesla Model 3 and the key fob
of the Tesla Model 3 and Y.

159



The BLE case study provided several insights into the specifics of the BLE protocol imple-
mentations. We observed that some input sequences led to reliability issues in the investigated
devices. Moreover, one learned model showed a violation of the BLE specification. For eight
investigated BLE devices, we learned seven different models for the connection procedure. Only
the two models in the Tesla components were equal to each other. This showed that the learned
models could be used to fingerprint BLE devices.

In another case study, we investigated the IPsec Internet Key Exchange (IPsec-IKEv1) pro-
tocol, which is used in VPN protocol implementations to establish an encrypted communication.
Thus, these protocol implementations must not introduce any security issues. Our case study
on learning two different VPN server implementations showed again that unexpected input se-
quences led to unexpected observations. For this case study, we compared the performance of
two learning algorithms: an improved version of L∗ and an improved version of the KV algo-
rithm. We observed that KV can help to reduce the number of queries especially if L∗ requires
several learning rounds. The exhaustive querying of active learning also revealed a security issue
in the used Python library that implements the Diffie-Hellman key exchange.

12.1.2 Alternative Techniques for Automata Learning

Network environments in practice often consider a multi-client setup. We also approached this
problem in this thesis. For this purpose, we tried to learn the Message Queuing Telemetry
Transport (MQTT) protocol in a multi-client setup following a similar technique as proposed
in the other learning setups, but failed for most of the implementation due to non-deterministic
observations. To overcome this problem, we proposed an active learning algorithm for learning
abstracted non-deterministic systems. Our developed learning algorithm extends the classic L∗

algorithm by further levels of abstraction for the considered input and output alphabet. Using
this approach, we managed to learn underspecifications of MQTT broker implementations that
interact with multiple clients.

In practice, creating an active learning setup might not always be feasible or a tedious process
to establish. Therefore, we also investigated passive learning techniques. First, we evaluated
classic state-merging-based techniques based on random samples. The passively learned models
achieve high accuracy in our performed conformance test if we align the random sample size to
the number of queries that active learning requires. However, in most cases, passive learning
did not manage to learn the correct minimal automaton.

The problem with passive learning techniques that are solely based on state merging is that
they might not generalize well enough if the provided data misses behavior. We investigated
if machine learning could overcome this challenge by generalizing better on sparse data. We
proposed an recurrent neural network (RNN) architecture that predicts the behavior and the
structure of a Mealy machine. For the training of the RNN model, we introduced a specific
regularization term that enforces deterministic predictions of output and state behavior. To
learn minimal automata, we iteratively reduce the considered upper bound for states. The
evaluation of our RNN-based learning technique showed that this technique worked and achieved
promising results also on random data especially if the considered input and output alphabet
is rather small. For larger systems, the algorithm did not always terminate with the given
budget of resources or learned a wrong generalization. However, we found a setup for all of the
considered examples that enabled us to learn the correct model.

12.1.3 Learning-based Security Testing Techniques

We showed that different automata learning techniques managed to successfully learn behavioral
models of communication protocol implementations. Our case studies on learning communica-
tion protocols already revealed violations of the corresponding protocol specification.
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For testing further security issues, we combined automata learning and fuzzing techniques.
We created a stateful black-box fuzzing technique which we denoted as learning-based fuzzing.
We defined learning-based fuzzing in a two-step procedure: in the first step, we learn the behav-
ioral model using automata learning techniques, and in the second step, we apply a model-based
fuzzing technique. We proposed a fuzzing framework that took advantage of the performed
abstraction that was required for learning a behavioral model. Instead of concretizing abstract
input into valid input, we considered also invalid and unexpected concretizations during fuzzing.

Our model-based fuzzing technique followed a conformance-testing approach, where we used
fuzzing techniques to generate the corresponding test suite. To generate this fuzzing test suite,
we proposed different techniques in order to reveal unexpected behavior. For the fuzzing of
the MQTT protocol, we proposed a grammar-based fuzzing technique that generates inputs
based on a provided set of rules that describe the language of the concrete inputs. We extended
the grammar by invalid characters to test for unexpected behavior. Our grammar-based fuzzing
technique revealed various violations of the MQTT specification. For example, tested broker im-
plementations forwarded prohibited characters to clients. We also demonstrated the possibility
that a malicious client could mimic internal broker communication.

For fuzzing BLE devices, we proposed a model-based fuzzing technique that generates the
fuzzing test suite using the structure of the provided model. This allowed us to provide state
coverage in black-box fuzzing. Furthermore, we could assign found issues to specific states in
the learned model. This technique found several reliability issues in the tested BLE devices. We
could crash four out of the six investigated devices. Furthermore, fuzzing revealed unexplored
states and we found that for all devices that enable encrypted communication the length of the
encryption key could be reduced to a security-critical size.

We compared different fuzzing techniques for testing VPN server implementations. When
fuzzing communication protocols, there exist a lot of possibilities for different concrete inputs.
Thus, we needed to select interesting behavioral aspects that should be fuzzed. For this purpose,
we evaluated different techniques. For example, we evaluated fuzzing based on mutating the set
of queries that are generated during active learning. Furthermore, we proposed search-based
techniques that use the underlying model to assess if an input sequence generates interesting
behavior. Based on these techniques, we found that the considered VPN server implementations
violate the IPsec IKEv1 protocol specification. We also compared our techniques to simple
random fuzzing and observe that random fuzzing was not successful to uncover the same issues.

12.2 Discussion

We discuss our gained research results based on the initially proposed research questions. For
completeness, we list the research questions once more.

• (RQ 1) What are the challenges of learning behavioral models in networked systems?

– (RQ 1.1) Does active automata learning perform well for learning communication
protocol implementations on physical devices?

– (RQ 1.2) Is automata learning useful to learn security-critical behavior?

• (RQ 2) How can automata learning be improved for practical applications?

– (RQ 2.1) Does passive learning represent an alternative to active learning?

– (RQ 2.2) How to improve automata learning to make it feasible for different chal-
lenges in networked environments?

• (RQ 3) Can automata learning support security testing techniques?

– (RQ 3.1) How can black-box fuzzing techniques be extended with automata learning?
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– (RQ 3.2) Is learning-based fuzzing effective at revealing security issues?

– (RQ 3.3) Can automata learning be used to fingerprint black-box devices?

(RQ 1) What are the challenges of learning behavioral models in networked systems? This
thesis investigates the communication protocols BLE, MQTT, and IPsec IKEv1. For all these
communication protocols, we considered real-world implementations as they can be used by
anybody who works with this communication protocol. We managed to find a learning setup
that enabled us to learn behavioral models of the different implementations. During learning,
however, we faced different challenges.

First, we had to find an abstraction of the input and output alphabet to make learning
feasible in a considerable amount of time. Considering all possible messages would be impossible.
Hence, we need to come up with an appropriate abstraction. For BLE and IKEv1 it was useful
to consider the packet structure that was already provided by packet manipulation libraries
such as Scapy [158]. However, for both libraries, we observed that not all required packets have
been defined, especially if we receive error messages. Therefore, we had to manually extend the
applied libraries with definitions for these unknown packets.

For testing communication protocols in a multi-client setup as presented in Chapter 8, we
additionally observed the problem that a too-coarse abstraction could lead to non-deterministic
behavior. To overcome this problem, we introduced a learning algorithm for learning an ab-
stracted non-deterministic finite state machine.

Another challenge in learning communication protocols was the creation of an interface that
allows us to communicate with the SUL. The problem is that automata learning requires sending
any input in any state which might be prohibited by existing interface implementations. For all
our learning setups, we required custom interface implementations. To set up such interfaces,
at least some domain knowledge about the protocol is useful and required.

The last challenge that we outlined is the observation of non-deterministic behavior. When
learning real implementations, packets might arrive delayed or get lost. We approached this
challenge by creating learning setups that allowed us to adapt the timeout for responses based
on the performance of the SUL. However, increasing only the timeout was not sufficient. In
addition, we needed the possibility to repeat queries during learning. We observed that send-
ing inputs in an unexpected order can lead to non-deterministic observations, where the SUL
retransmits previous messages.

(RQ 1.1) Does active automata learning perform well for learning communication protocol
implementations on physical devices? A special challenge when learning real systems is to
learn implementations on physical devices. Besides the challenges listed above, we also faced
physical challenges such as interference with any other communication protocols or the distance
to the SUL. Furthermore, the devices might become unreachable after a while, when no proper
interactions were performed.

In this thesis, we successfully learned BLE stack implementations on physical devices. To in-
teract with the BLE devices, we required additional BLE hardware that runs a custom firmware
that allowed us to send custom BLE packets. However, this setup needed to be created only
once and could then be reused for all devices. This setup enabled us to interact with any BLE
device that sends advertisements. We showed that this approach is also applicable for learning
behavioral models of the BLE device that is built into a Tesla Model 3. For learning the corre-
sponding key fob, we faced another challenge, where the device stopped sending advertisements
when it was not moved for some time. For this an additional hardware setup was required that
keeps the device in motion. This showed that learning behavioral models of implementations
on physical devices might require some additional engineering efforts, but it was feasible and
provided insights into the difference between the protocol implementations of different BLE
devices.
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This case study complements the other case studies [37, 55, 168] that showed that automata
learning is applicable to learn behavioral models of implementations of physical devices.

(RQ 1.2) Is automata learning useful to learn security-critical behavior? We used automata
learning to learn behavioral models that formalize the key exchange procedure of the BLE
protocol as well as the key exchange procedure that is performed by VPN implementations in
order to establish an encrypted communication. We showed that these security-critical protocols
could be learned. However, the setup of the learning framework again required some knowledge
about the protocol. The concretization and abstraction of inputs and outputs had to consider
the current state of the protocol, e.g., if a message must be encrypted or decrypted.

Learning key-exchange protocols was useful since the model showed all possible paths that
allow a successful key exchange. Active automata learning algorithms exhaustively query the
SUL to explore the state space. This might reveal unexpected paths, which could introduce a
security issue. In our case study, we especially observed behavioral differences for the differ-
ent implementations in the treatment of unexpected messages. Some implementations simply
ignored unexpected messages, whereas others reset to a specific point in the protocol.

Furthermore, the exhaustive querying of active automata learning revealed that unusual
input sequences lead to reliability issues, where the device stopped being reachable. An example
of this was the sudden termination of the key exchange procedure from one side. Thus, especially
active learning techniques were beneficial for revealing unexpected behavior.

(RQ 2) How can automata learning be improved for practical applications? The challenges
discussed in RQ 1 show that the application of automata learning in practice is not always
straightforward. In the following two subsequent questions, we discuss if passive learning algo-
rithms represent an alternative and propose methods to improve automata learning for learning
communication protocol implementations.

(RQ 2.1) Does passive learning represent an alternative to active learning?

Passive learning techniques do not require an interface that enables the active interaction
with the SUL during learning. Furthermore, the given set of samples can be preprocessed to
filter out invalid observations that do not correctly reflect the behavior of the SUL.

In Chapter 6, we evaluated a passive learning algorithm that is based on state merging
for learning models of communication protocols. Given that we align the sample size to the
required queries by an active learning algorithm, the passively learned models achieved high
behavioral accuracy with the SUL. Nevertheless, in most cases, we did not manage to learn the
correct minimal automaton. To learn the correct model, large random samples would have been
required. The problem with traditional state-merging algorithms is that they can only merge
states which have a similar future. Thus, if the provided sample is incomplete then states might
not be merged.

To overcome this problem, we proposed an RNN-based learning algorithm in Chapter 7.
Our proposed technique achieved promising results, especially if the maximum number of states
is known. If the number of states is unknown, which is usually the assumption for black-box
systems in networked environments, we had to adapt for some examples the given budget, and
had to repeat the experiment several times in order to verify that the model is learned correctly.
Thus, we state that there is room for improvement, but it provides an alternative if active
learning is not feasible.

(RQ 2.2) How to improve automata learning to make it feasible for different challenges in
networked environments?

To overcome the challenges of actively learning behavioral models of communication proto-
cols, we had to develop a fault-tolerant learning setup. For example, such a setup included the
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repetition of queries in case we observed non-deterministic behavior. In general, the goal is to
learn a correct model with the lowest possible number of queries. This is especially critical when
learning networked systems since every query is costly to execute and comes with the risk that it
must be repeated. In Chapter 3, we discussed some general improvements for automata learning
algorithms such as an improved counterexample processing or the usage of caching structures
to avoid queries on the SUL.

In Chapter 6, we compared the sample required by the improved version of the L∗ algorithm
that we used for most of the case studies with an optimized sample. Our results showed that
there is room for improvement. For this purpose, we developed an improved version of the active
learning algorithm of Kearns and Vazirani [96], which we referred to as KV. Our evaluation in
Chapter 5 showed that our improved version of KV was beneficial to decrease the number of
required queries, especially if L∗ required more than one learning round.

In our performed evaluation, we observed that some communication protocol implementa-
tions could not be represented by a deterministic modeling formalism. To overcome this problem,
we proposed that these implementations can be learned with non-deterministic learning algo-
rithms. We note that learning non-deterministic systems could come with additional costs since
queries must be repeated in order to observe all possible outputs. Chapter 8 proposed tech-
niques that make learning in practice feasible without the requirement that everything must be
observed at once.

In order to learn communication protocol implementations in a multi-client setup, we pre-
sented in Chapter 8 an abstraction technique that learns abstracted non-deterministic finite state
machines. To find a proper generalization, we extended the minimally adequate teacher frame-
work by an additional output abstraction level. Using this technique made learning multi-client
communication protocols in a feasible amount of time possible.

(RQ 3) Can automata learning support security testing techniques?

This thesis proposed security testing techniques that use automata learning to generate
behavioral models of black-box systems. The learned models then built the basis for a stateful
black-box testing technique. In this thesis, we extended fuzz testing techniques by automata
learning. The following questions discuss the approaches and their results. Furthermore, we
discuss why the learned models are in general useful for the analysis in a networked environment.

(RQ 3.1) How can black-box fuzzing techniques be extended with automata learning?

The drawback of black-box fuzzing in practice is that it is hard to determine which parts of
the system have been tested. Furthermore, if a black-box fuzzer uncovers issues it might not
be straightforward to find the cause for the revealed issue. We approached both problems by
extending black-box fuzzing with automata learning as a preliminary step.

In Chapter 9, we introduced the concept of learning-based fuzzing which we defined in a two-
step procedure. In the first step, we applied automata learning to learn a behavioral model. In
the second step, we built a model-based fuzzing technique that tests the conformance between a
black-box system and the behavioral model. This created a stateful black-box fuzzing technique.

For testing the conformance between the learned model and the SUT, we proposed different
fuzzing techniques. We created fuzzed input by considering grammatical structures, boundary
values, or utilizing input generators of existing fuzzing tools. At the same time, we could
generate test suites that fulfill certain coverage criteria or were generated based on search-based
techniques.

Another big advantage of learning-based fuzzing was that many components from an active
learning setup could be reused. For example, we could reuse the developed learning interfaces
in order to provide fuzzed inputs to the SUT. Furthermore, the applied abstraction and con-
cretizing technique could be used to create invalid or unusual concrete inputs.
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(RQ 3.2) Is learning-based fuzzing effective at revealing security issues?
We evaluated the effectiveness of our learning-based fuzzing technique in Chapter 10. For

this purpose, we fuzzed MQTT broker implementations, BLE devices, and VPN servers.
We used grammar-based fuzzing for testing MQTT broker implementations. We found vio-

lations of the MQTT specification in four out of five investigated MQTT brokers. One broker
not only accepted prohibited characters, it also forwards them to connected clients, where these
characters could be vulnerable to an innocent client.

Our case study on BLE devices revealed that four out of six of the investigated devices
crashed on unexpected inputs. Furthermore, we showed that for all devices that allowed the
establishment of encrypted communication the key size could be reduced such that the key could
be theoretically generated by brute-force.

For the VPN server implementations, we found that both investigated implementations vio-
late the specification since they missed evaluating field values or only responded to invalid inputs
a few steps later in the protocol.

This showed that our learning-based fuzzing technique was successful in revealing issues in
the investigated communication protocol implementations.

(RQ 3.3) Can automata learning be used to fingerprint black-box devices? We highlighted
another aspect of automata learning in the context of the security analysis of networked envi-
ronments. The learned models could be used to fingerprint black-box devices. We saw in the
BLE and the VPN case study that the learned models of almost all investigated implementa-
tions were different. Only the two BLE models from the Tesla case study were equivalent, which
might hint at the fact that the same BLE stack implementation is used. Based on the differ-
ent models, an attacker could generate a fingerprinting sequence that allows one to determine
which implementation is used. This could be dangerous in case the implementation has known
vulnerabilities that can be exploited by the attacker.

12.3 Future Work

Our results of the presented techniques were promising. We showed that automata learning
could successfully be used to analyze the security-critical behavior of black-box systems. In the
following, we outline future directions for our proposed techniques.

General framework for learning communication protocols. We showed that automata
learning, especially active learning techniques, could learn behavioral models of communication
protocol implementations. These models were useful for the further analysis of the protocol.
However, the creation of a learning interface was a tedious process. In the future, it would
be useful to have a general tool that enables the automatic setup of such an interface to some
extent. For example, Aarts et al. [4] outline a technique to automize the alphabet abstraction.
Furthermore, presented components of our learning frameworks such as fault-tolerant caching
structures can be reused for learning other communication protocols.

Automatic analysis of learned models. Most of the performed analysis of the learned
models was done manually. This was sufficient to indicate that model learning is useful to
reveal violations of the specification. However, if someone considers a larger set of investigated
implementations or wants to integrate automata learning in a continuous development process, it
would be useful to automize the analysis of the learned models. The literature provides different
directions for automated analysis or behavioral models. Tappler et al. [170] proposed a method
to check for behavioral differences between two models. The differences are then an indicator of
specification violations. Another approach would be to define formal properties and verify them
using model-checking techniques.
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Extending RNN-based techniques for other formalisms. Our RNN-based learning tech-
nique achieved promising first results on learning behavioral models. In the literature, recurrent
neural network (RNN) are commonly used to predict sequential data. Thus, it would be inter-
esting to investigate if RNN-based learning techniques are sufficient to learn other behavioral
aspects such as timed or stochastic behavior. The idea is that recurrent neural network (RNN)
might generalize better on incomplete data sets which is often the case when considering con-
tinuous values such as time.

Learning-based fuzzing for other formalisms. This thesis discusses learning-based fuzzing
only for deterministic systems. For future work, it would interesting to consider other behavioral
aspects. Our presented results show that several systems behaved non-deterministically. More-
over, several security-critical aspects of systems depend on other advanced system properties
such as timed or stochastic behavior. For example, key-exchange protocols frequently rely on
random value generation. To ensure that the key generation is secure, the random value gen-
eration must not allow any conclusions to be drawn about the other values. Another approach
would be to consider side channel information such as timed behavior in the learned model and
then check if fuzz testing could reveal any unexpected timed dependencies.

The work presented in this thesis shows promising techniques for applying automata learning
to the testing and analysis of networked environments for security issues. We show that there
are still open questions and hope that the techniques presented in this thesis will be useful in
providing a foundation for future research in this area.
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[129] Edi Muškardin, Bernhard K. Aichernig, Ingo Pill, Andrea Pferscher, and Martin Tap-
pler. AALpy: an active automata learning library. Innovations in Systems and Soft-
ware Engineering, 18(3):417–426, 2022. doi: 10.1007/s11334-022-00449-3. URL https:

//doi.org/10.1007/s11334-022-00449-3.
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The Fuzzing Book. CISPA Helmholtz Center for Information Security, 2023. URL https:

//www.fuzzingbook.org/. Retrieved 2023-01-07 14:37:57+01:00.

[203] Andreas Zeller, Rahul Gopinath, Marcel Böhme, Gordon Fraser, and Christian Holler.
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